Стабилизатор напряжения ресанта как подключить: Подключение стабилизатора напряжения | Статья

Автор: | 29.01.1970

Содержание

Как подключить стабилизатор напряжения однофазный

Электроэнергия, поступающая к нам в квартиры, имеет свои стандарты. Например, для сети питания 220 вольт отклонение не должно превышать 10% от номинала. Такой разбег в величине напряжения не всегда благотворно сказывается на функционировании чувствительных электрических устройств бытового назначения, приборов освещения. Организации, поставляющие электроэнергию, применяют трансформаторы для линий питания, по которым приходит электрический ток к домам.

При работе под нагрузкой линия выдает нижний предел напряжения. При дальнейшем возрастании нагрузки нормативный предел снижается, так как мощность подстанции исчерпывается. Также функционирует и сеть 380 В. Это объясняет режим работы установок в обычных условиях. Реально же снабжение электричеством домов зимой бывает намного хуже.

Эту ситуацию можно исправить, применяя приборы, которые стабилизируют основные параметры электрического тока. Стабилизаторы применяются в разных местах. Стоимость такого устройства небольшая, а его монтаж и подключение довольно простое, и позволяет произвести всю работу самостоятельно.

Определение типа защиты

В настоящее время имеются стационарные приборы, стабилизирующие напряжение, монтаж которых осуществляется на весь дом, а также переносные модели, которые могут обслужить всего несколько электрических устройств. Кроме этого, стационарные стабилизаторы бывают трехфазными, однофазными. Это зависит от условий использования. Подключения на 1-фазную и 3-фазную сеть имеют свои отличия.

В квартире или собственном доме лучше подключить 1-фазный стабилизатор возле распредщитка. Это дает возможность защиты всей сети от воздействия перегрузок. Поэтому, рассмотрим инструкцию по монтажу для 1-фазного устройства.

Выбор места монтажа

При самостоятельной установке вся ответственность ложится на вас, так как при неправильном монтаже прибор может выйти из строя, может произойти пожар и т. д.

Чтобы своими руками подключить стабилизатор напряжения в квартире, необходимо учесть некоторые советы:

  • Помещение выбирается сухим, проветриваемым, так как основной причиной неисправности становится наличие влаги в корпусе прибора.
  • При монтаже в нише, проверьте, насколько безопасны отделочные материалы на предмет горючести.
  • Нужно обеспечивать зазор между стенками и стабилизатором. Необходимо отступать на 10 см.
  • При настенном монтаже, проверьте, чтобы крепление выдержало массу настенного стабилизатора.

Подключение к сети

Самостоятельное подключение к сети стабилизатора не представляет большой сложности. На тыльной стороне устройства есть колодка с клеммами на пять разъемов. Чаще всего провода чередуются так: фаза и ноль, заземление, нагрузочные фаза и ноль.

Для подключения нужно всего лишь сделать правильный выбор сечения кабеля. Далее осуществляется самостоятельный монтаж. Схема подключения стабилизатора на 220 вольт:

Типы стабилизаторов

Когда вы решились установить стабилизатор, то необходимо выбрать и приобрести модель стабилизатора. Чтобы не запутаться с выбором оптимального варианта прибора, нужно знать, что все устройства выполняют подобную функцию, но имеют отличия по принципу действия. Для получения качественной энергии для дома подходят 2 типа приборов:

Сервоприводное устройство, которое имеет схему сравнения, служащую для управления небольшим моторчиком. Он вращается в разных направлениях, и двигает бегунок, снимающий ток. В итоге на выходе получается стабильная величина напряжения 220 вольт. Достоинством такого устройства является плавное регулирование. Это дает возможность получения напряжения без перепадов.

Релейное исполнение устройства стабилизации имеет свои отличия по принципу действия. В корпусе устройства находится трансформатор с клеммами. Напряжение входа умножается на коэффициент, и подводится для каждого вывода. Электронные элементы управляют действием релейного блока, переключающего при необходимости выводы трансформатора. За счет этого на выходе стабилизатора получается напряжение 220 вольт. Отрицательным фактором таких устройств является появление небольших скачков напряжения, когда происходит переключение ступеней.

Третьим типом стабилизаторов является электронный прибор.

Он относится к дорогостоящим приборам, хотя его принцип действия мало чем отличается от релейного устройства. У него вместо реле работает электронный ключ, переключающий выводы трансформатора, на тиристорах.

Ступени стабилизатора

Все варианты стабилизаторов имеют несколько ступеней работы. От их числа зависит качество выдаваемого напряжения. Для понимания работы ступеней рассмотрим пример. Когда подается напряжение 220 вольт нормального значения, то прибор прогоняет его по схеме без изменений. Когда напряжение падает до предельных значений, то электронный ключ, либо реле подключают 1-ю ступень, а на выходе появляется стабильное напряжение 220 вольт.

Последующее падение напряжения принуждает стабилизатор переключиться на другие ступени, которые позволят ему выдать необходимые 220 вольт. Когда ступеней уже не хватает, то стабилизатор не сможет повысить напряжение. Чем больше число ступеней, тем шире его интервал регулировки напряжения.

Советы по подключению стабилизатора напряжения:

  1. Перед монтажом всегда отключайте питание сети в электрическом щите.
  2. Подключите вспомогательную защиту прибора в виде автоматического выключателя и устройства защитного отключения. Это продлевает срок его работы. Монтировать автоматику целесообразно за счетчиком, но перед защитой.
  3. Электрическая сеть бытового назначения должна иметь контур заземления. Монтаж стабилизатора без заземления запрещается согласно правилам электробезопасности.
  4. Монтаж стабилизирующего устройства в доме до счетчика запрещен. Оптимальным вариантом установки стабилизатора будет выполнение его по вышеуказанной схеме.
  5. Запрещается подключать стабилизатор сразу после заноса его с мороза в квартиру. Внутри корпуса скапливается конденсат, который может сильно повредить устройство при включении, и сократить срок службы. На улице также запрещается его установка.
  6. Стабилизатор небольшой мощности до 5 киловатт подсоединяется прямо к розетке. Этот способ приемлем для гаражных условий, дачного дома. Иногда осуществляют установку переносного стабилизатора отдельно для цифровой техники, например, на компьютер, телевизор и т. д.

Для трехфазной сети 380 вольт стабилизатор подключают на каждую фазу по одному устройству, соединяя их схемой «звезды». Этим способом достигается экономия денежных средств на покупке устройств, а также на его обслуживании и ремонте, так как 3-фазное устройство намного дороже.

  • После монтажа нужно проконтролировать правильность соединений и монтажа. Для этого подключают автоматы ввода в распредщите. Треск, гудение, искрение не допускаются. Если таких признаков нет, то подключение стабилизатора напряжения выполнено правильно.
  • Не допускается подключать стабилизатор на нагрузку, превышающую мощность прибора. Резерв его мощности должен быть не менее 30%.
  • Правильная схема установки чаще всего изображается на корпусе устройства. Сначала нужно ориентироваться на эту схему. Если такой схемы нет, то оптимальным вариантом являются данные рекомендации. Популярные модели стабилизаторов подключают именно таким образом.

Каждый год необходимо осуществлять проверку надежности соединений проводки в клеммниках, при необходимости подтягивать их затяжку.

Пример подключения стабилизатора

Домашний счетчик, после него два автомата.

Верхний выключатель отключает фазу, другой – ноль. Один провод поступает на дом, а другой на летнюю кухню.

Схем подключения

Открываем крышку клеммника стабилизатора:

Выполняем подключение стабилизатора согласно схеме.

Стабилизатор стоит за стеной, поэтому имеется отверстие, через которое проходят четыре провода: фаза для стабилизатора, ноль для него же, ноль для квартиры, фаза тоже в квартиру.

Еще раз контролируем правильность соединений и включаем питание.

На дисплее показывается напряжение и ток на выходе.

Схемы 3-фазных нагрузок через 1-фазные стабилизаторы

Устройства, применяемые в быту, расходуют меньше энергии, чем промышленные образцы. Поэтому для нормальных свойств сети можно использовать три равных по характеристикам стабилизатора напряжения, которые соответствуют нагрузке для 1-фазной линии.

Если они применяют разделение нуля, то для их монтажа подходит такая схема:

По этой схеме для наглядности шина провода защиты РЕ не указана, а соединение стабилизаторов к ней выполнено упрощенно.

Рабочий нулевой провод после защит, находящихся в распредщитке дома, разделяется на клеммы вывода каждого стабилизатора. Его шина создается путем параллельного соединения клемм выхода всех трех устройств. Нули ко всем нагрузкам подходят жилами проводов от этой шины.

Клемма фазы, которая входит в каждый стабилизатор, подключается к своим клеммам защитного устройства, выходная клемма с группой автоматов, подающих питание на потребители.

Если объединить рабочие отходящие и входящие нули, то это делает схему проще. Но у отдельных моделей такой способ нарушает некоторые алгоритмы управления при возникновении аварии. Поэтому изготовители осуществляют такое разделение.

На схеме изображено подключение аналогичных стабилизаторов к 3-фазным нагрузкам.

Все схемы показаны для ознакомления с принципом действия стабилизаторов напряжения. Поэтому на схеме не изображаются устройства коммутации, распредкоробки и другие устройства.

Как подключить стабилизатор напряжения ресанта


Как подключить стабилизатор напряжения ресанта

» Как

как подключить стабилизатор Ресанта АСН 10000 Н/1-Ц Lux

Зарегистрирован: 15 авг 15:46

Сообщения: 1

Я живу в 5-и этажном общежитие и в вечернее время у нас падает напряжение до 190-180В

Вот купил стабилизатор Ресанта АСН 10000 Н/1-Ц Lux от него хочу за питать 3 нагрузки холодильник Stinol 101ER,СМ Electrolux EWT 825,микроволновку LG MS2041US

Сообщения: 3047

Почему 6 мм2, а не 10?

Первая колонка — для одиночного провода, проложенного открыто.

Стабилизаторы напряжения Ресанта

Стабилизатор напряжения — это электрический прибор, основная цель которого предохранение бытовой техники от перепадов напряжения и, как следствие, от преждевременного выхода ее из строя.

Ресанта представляет различные модели подобных устройств для дома. Прежде, чем купить нужный прибор, следует определиться с необходимой мощностью. Представляем вашему вниманию основные категории такого оборудования.

Однофазный стабилизатор напряжения Ресанта применяется для защиты электроприборов с мощностью до 5 кВт от короткого замыкания и перепадов напряжения.

Прибор оснащен частотным фильтром входного и выходного напряжения. Предусмотрено аварийное отключение, которое срабатывает при повышении показателей напряжения. Данное устройство можно крепить на стену.

Трёхфазный стабилизатор напряжения Ресанта. Предназначен для домов, где подведены три фазы, или там, где установлены агрегаты, которые требуют 380В. Производятся только электромеханического типа. Достаточно дорогостоящие приборы, но оправдывают себя, так характеризуются высокой практичностью в пользовании.

Автоматические стабилизаторы напряжения Ресанта делятся на несколько подвидов: однофазные электромеханического типа, однофазные цифровые пониженного напряжения, однофазные электронного типа с цифровым дисплеем, однофазные цифровые настенные серии LUX, бытовые однофазные цифровые, трехфазные электромеханического типа.

Как подключить стабилизатор напряжения. Рассмотрим два возможных варианта:

  • 1 вариант подключение после счетчика. Такой вид подключения выбирают, когда нужно подключить весь дом (квартиру). После счетчика устанавливают автомат (автоматический выключатель), на вход прибора идет выход автомата. Очень важно подводить фазы к фазе. Также можно установить дополнительный автомат на само устройство. Схема: счетчик автоматический выключатель стабилизатор автоматы разводки.
  • 2 вариант розеточное подключение. К такому виду подключения прибегают в том случае, когда требуется оборудование большей мощности. На вход прибора подводят провод (на другом конце провода подсоединена вилка), на выход провод, на конце которого находится розетка. В этом случае фаза роли не играет. Длину провода вы можете корректировать, так как вам нужно. Схема: вилка провод (на вход) стабилизатор провод (на выход) розетка.

Технические характеристики стабилизатора напряжения Ресанта заключаются в следующем:

  1. Мощность номинальная (Вт/А): 3000
  2. Частота (Гц): 50
  3. Диапазон (входное напряжение) (В): 240 430
  4. Стабилизационная точность: 220 2%
  5. КПД (при токе нагрузки 80%) (%): 97
  6. Охлаждение: воздушное
  7. Температура нагрева (максимальная) обмотки трансформатора (С): 70
  8. Регулировочное время (сек): 10
  9. Искажение синусоиды: отсутствует
  10. Защита (высоковольтная) (В): 260 5
  11. Защитный класс: ІР негерметизированный
  12. Температура окружающей среды во время работы (С):0 45
  13. Влажность воздуха (%): не более 80
  14. Размеры (мм): 810х430х530.

Несмотря на то, что все модели Ресанта пользуются большой популярностью, так как сделаны очень качественно, однако и в них случаются поломки.

Что же делать при неисправности стабилизаторов напряжения Ресанта?

Первое, что нужно сделать это выяснить причину неисправной работы. Если вы не компетентны в этом вопросе, то лучше вызвать мастера либо отвезти прибор в ремонтную службу (фирму, где осуществлялась покупка). Профессионалы осмотрят аппарат и приступят к ремонту. Если он находится на гарантии, а вашей вины в поломке нет, то все будет абсолютно бесплатно.

XXI столетие это время автоматизации и компьютеризации. Мы привыкли к комфорту, поэтому, если что-то выходит из строя, это нас очень беспокоит. Каждый потребитель электроэнергии понимает, что такое перепады напряжения и как может из-за этого страдать наша техника. Поэтому самый лучший вариант для того, чтобы уберечь наш быт от поломок приобрести соответствующее устройство от Ресанта, так как это гарантия исправной работы всех электроприборов в вашем доме. Конечно, выбор делать вам: тратить деньги на стабилизатор либо надеяться на то, что все обойдется. Однако лучше обезопасить себя, купив оборудование от компании Ресанта.

Смотрите видео

Причиной поломки бытовых электроприборов зачастую могут стать скачки напряжения в сети. Предотвратить подобные проблемы можно с помощью стабилизаторов напряжения, которые сглаживают помехи и искажения и оберегают приборы от поломки. В этой статье расскажем, как правильно подключить стабилизатор напряжения на примере прибора фирмы Ресанта.

Где установить стабилизатор?

Установка стабилизатора напряжения в квартиру требует грамотного выбора размещения. Лучше всего поместить прибор в кладовке, если таковая имеется. И без того не очень хорошо, когда электрический прибор большой мощности стоит под ногами , а если в квартире дети, то это вообще опасно.

При этом, важно отметить, стабилизатор нужно разместить так, чтобы от его поверхности до стен со всех сторон оставалось сантиметров по 10 свободного пространства – это обеспечит нормальную вентиляцию устройства и защитит его от перегрева. Кроме того, материал стен, которые окружают стабилизатор, должен быть негорючим – голый бетон, кирпич, стеклотекстолит и т.д.

Как подключить?

Стабилизатор имеет три контакта для подключения:

Контакты отмаркированы, а потому вы их вряд ли перепутаете. На контакт фаза-вход стабилизатора заводится провод фаза распределительного автомата (электросчетчика), к контакту фаза-выход подключается фаза нагрузки (электроприбора, который вы хотите обезопасить от перепадов напряжения), а ноль подключается и к нулю нагрузки, и к нулю распределительного автомата (см. рисунок).

Важно! Все подключения проводите при обесточенной сети — предупредите соседей по площадке, отключите распределительный автомат и только затем приступайте к подключению.

Источники: http://ceshka.ru/forum/viewtopic.php?p=2415, http://myfta.ru/articles/stabilizatory-napryazheniya-resanta, http://elhow.ru/bytovye-sovety/remont/elektrika/kak-podkljuchit-stabilizator-naprjazhenija

Комментариев пока нет!

Поделитесь своим мнением

restart24. ru

Как подключить стабилизатор напряжения однофазный

Электроэнергия, поступающая к нам в квартиры, имеет свои стандарты. Например, для сети питания 220 вольт отклонение не должно превышать 10% от номинала. Такой разбег в величине напряжения не всегда благотворно сказывается на функционировании чувствительных электрических устройств бытового назначения, приборов освещения. Организации, поставляющие электроэнергию, применяют трансформаторы для линий питания, по которым приходит электрический ток к домам.

При работе под нагрузкой линия выдает нижний предел напряжения. При дальнейшем возрастании нагрузки нормативный предел снижается, так как мощность подстанции исчерпывается. Также функционирует и сеть 380 В. Это объясняет режим работы установок в обычных условиях. Реально же снабжение электричеством домов зимой бывает намного хуже.

Эту ситуацию можно исправить, применяя приборы, которые стабилизируют основные параметры электрического тока. Стабилизаторы применяются в разных местах. Стоимость такого устройства небольшая, а его монтаж и подключение довольно простое, и позволяет произвести всю работу самостоятельно.

Определение типа защиты

В настоящее время имеются стационарные приборы, стабилизирующие напряжение, монтаж которых осуществляется на весь дом, а также переносные модели, которые могут обслужить всего несколько электрических устройств. Кроме этого, стационарные стабилизаторы бывают трехфазными, однофазными. Это зависит от условий использования. Подключения на 1-фазную и 3-фазную сеть имеют свои отличия.

В квартире или собственном доме лучше подключить 1-фазный стабилизатор возле распредщитка. Это дает возможность защиты всей сети от воздействия перегрузок. Поэтому, рассмотрим инструкцию по монтажу для 1-фазного устройства.

Выбор места монтажа

При самостоятельной установке вся ответственность ложится на вас, так как при неправильном монтаже прибор может выйти из строя, может произойти пожар и т. д.

Чтобы своими руками подключить стабилизатор напряжения в квартире, необходимо учесть некоторые советы:

  • Помещение выбирается сухим, проветриваемым, так как основной причиной неисправности становится наличие влаги в корпусе прибора.
  • При монтаже в нише, проверьте, насколько безопасны отделочные материалы на предмет горючести.
  • Нужно обеспечивать зазор между стенками и стабилизатором. Необходимо отступать на 10 см.
  • При настенном монтаже, проверьте, чтобы крепление выдержало массу настенного стабилизатора.

Подключение к сети

Самостоятельное подключение к сети стабилизатора не представляет большой сложности. На тыльной стороне устройства есть колодка с клеммами на пять разъемов. Чаще всего провода чередуются так: фаза и ноль, заземление, нагрузочные фаза и ноль.

Для подключения нужно всего лишь сделать правильный выбор сечения кабеля. Далее осуществляется самостоятельный монтаж. Схема подключения стабилизатора на 220 вольт:

Типы стабилизаторов

Когда вы решились установить стабилизатор, то необходимо выбрать и приобрести модель стабилизатора. Чтобы не запутаться с выбором оптимального варианта прибора, нужно знать, что все устройства выполняют подобную функцию, но имеют отличия по принципу действия. Для получения качественной энергии для дома подходят 2 типа приборов:

Сервоприводное устройство, которое имеет схему сравнения, служащую для управления небольшим моторчиком. Он вращается в разных направлениях, и двигает бегунок, снимающий ток. В итоге на выходе получается стабильная величина напряжения 220 вольт. Достоинством такого устройства является плавное регулирование. Это дает возможность получения напряжения без перепадов.

Релейное исполнение устройства стабилизации имеет свои отличия по принципу действия. В корпусе устройства находится трансформатор с клеммами. Напряжение входа умножается на коэффициент, и подводится для каждого вывода. Электронные элементы управляют действием релейного блока, переключающего при необходимости выводы трансформатора. За счет этого на выходе стабилизатора получается напряжение 220 вольт. Отрицательным фактором таких устройств является появление небольших скачков напряжения, когда происходит переключение ступеней.

Третьим типом стабилизаторов является электронный прибор. Он относится к дорогостоящим приборам, хотя его принцип действия мало чем отличается от релейного устройства. У него вместо реле работает электронный ключ, переключающий выводы трансформатора, на тиристорах.

Ступени стабилизатора

Все варианты стабилизаторов имеют несколько ступеней работы. От их числа зависит качество выдаваемого напряжения. Для понимания работы ступеней рассмотрим пример. Когда подается напряжение 220 вольт нормального значения, то прибор прогоняет его по схеме без изменений. Когда напряжение падает до предельных значений, то электронный ключ, либо реле подключают 1-ю ступень, а на выходе появляется стабильное напряжение 220 вольт.

Последующее падение напряжения принуждает стабилизатор переключиться на другие ступени, которые позволят ему выдать необходимые 220 вольт. Когда ступеней уже не хватает, то стабилизатор не сможет повысить напряжение. Чем больше число ступеней, тем шире его интервал регулировки напряжения.

Советы по подключению стабилизатора напряжения:

  1. Перед монтажом всегда отключайте питание сети в электрическом щите.
  2. Подключите вспомогательную защиту прибора в виде автоматического выключателя и устройства защитного отключения. Это продлевает срок его работы. Монтировать автоматику целесообразно за счетчиком, но перед защитой.
  3. Электрическая сеть бытового назначения должна иметь контур заземления. Монтаж стабилизатора без заземления запрещается согласно правилам электробезопасности.
  4. Монтаж стабилизирующего устройства в доме до счетчика запрещен. Оптимальным вариантом установки стабилизатора будет выполнение его по вышеуказанной схеме.
  5. Запрещается подключать стабилизатор сразу после заноса его с мороза в квартиру. Внутри корпуса скапливается конденсат, который может сильно повредить устройство при включении, и сократить срок службы. На улице также запрещается его установка.
  6. Стабилизатор небольшой мощности до 5 киловатт подсоединяется прямо к розетке. Этот способ приемлем для гаражных условий, дачного дома. Иногда осуществляют установку переносного стабилизатора отдельно для цифровой техники, например, на компьютер, телевизор и т. д.

Для трехфазной сети 380 вольт стабилизатор подключают на каждую фазу по одному устройству, соединяя их схемой «звезды». Этим способом достигается экономия денежных средств на покупке устройств, а также на его обслуживании и ремонте, так как 3-фазное устройство намного дороже.

  • После монтажа нужно проконтролировать правильность соединений и монтажа. Для этого подключают автоматы ввода в распредщите. Треск, гудение, искрение не допускаются. Если таких признаков нет, то подключение стабилизатора напряжения выполнено правильно.
  • Не допускается подключать стабилизатор на нагрузку, превышающую мощность прибора. Резерв его мощности должен быть не менее 30%.
  • Правильная схема установки чаще всего изображается на корпусе устройства. Сначала нужно ориентироваться на эту схему. Если такой схемы нет, то оптимальным вариантом являются данные рекомендации. Популярные модели стабилизаторов подключают именно таким образом.

Каждый год необходимо осуществлять проверку надежности соединений проводки в клеммниках, при необходимости подтягивать их затяжку.

Пример подключения стабилизатора

Домашний счетчик, после него два автомата.

Верхний выключатель отключает фазу, другой – ноль. Один провод поступает на дом, а другой на летнюю кухню.

Схем подключения

Открываем крышку клеммника стабилизатора:

Выполняем подключение стабилизатора согласно схеме.

Стабилизатор стоит за стеной, поэтому имеется отверстие, через которое проходят четыре провода: фаза для стабилизатора, ноль для него же, ноль для квартиры, фаза тоже в квартиру.

Еще раз контролируем правильность соединений и включаем питание.

На дисплее показывается напряжение и ток на выходе.

Схемы 3-фазных нагрузок через 1-фазные стабилизаторы

Устройства, применяемые в быту, расходуют меньше энергии, чем промышленные образцы. Поэтому для нормальных свойств сети можно использовать три равных по характеристикам стабилизатора напряжения, которые соответствуют нагрузке для 1-фазной линии.

Если они применяют разделение нуля, то для их монтажа подходит такая схема:

По этой схеме для наглядности шина провода защиты РЕ не указана, а соединение стабилизаторов к ней выполнено упрощенно.

Рабочий нулевой провод после защит, находящихся в распредщитке дома, разделяется на клеммы вывода каждого стабилизатора. Его шина создается путем параллельного соединения клемм выхода всех трех устройств. Нули ко всем нагрузкам подходят жилами проводов от этой шины.

Клемма фазы, которая входит в каждый стабилизатор, подключается к своим клеммам защитного устройства, выходная клемма с группой автоматов, подающих питание на потребители.

Если объединить рабочие отходящие и входящие нули, то это делает схему проще. Но у отдельных моделей такой способ нарушает некоторые алгоритмы управления при возникновении аварии. Поэтому изготовители осуществляют такое разделение.

На схеме изображено подключение аналогичных стабилизаторов к 3-фазным нагрузкам.

Все схемы показаны для ознакомления с принципом действия стабилизаторов напряжения. Поэтому на схеме не изображаются устройства коммутации, распредкоробки и другие устройства.

Подключение стабилизатора к сети

ostabilizatore.ru

Подключение стабилизатора

Мне была поставлена задача: перебрать электрощит в доме и подключить стабилизатор напряжения.

Дом на четыре уровня: подвал, этажи с первого по третий.

Дом находится в близлежащей деревеньке, добираться несложно.

С переборкой электрощита особых сложностей не возникло. Хотя, конечно, старый электрощит представлял из себя печальное зрелище… Работа с электрощитом заняла три дня.

Получилось довольно удачно установить новый щиток в гипсокартонную стену. Для крепления я использовал вертикально установленные металлические профили.

Начинка электрощита получилась интересной. Так как перекрытия дома деревянные, я установил на вводе противопожарное УЗО. Этого требуют правила из священной книги электрика – ПУЭ.

Противопожарное УЗО является дополнительной защитой от возгорания электропроводки в любом помещении, не обязательно деревянном. Так, например, мне приходилось устанавливать такое УЗО в одном из павильонов модной итальянской одежды в Крокус Сити.

Установка была обязательным требованием для арендодателей.

Также заказчик просил установить защиту от перенапряжений. Мой выбор пал на проверенные временем УЗМ белорусских производителей.

На мой взгляд, это лучшее устройство по защите от небольших импульсных скачков и отклонения напряжения от комфортных величин.

На вводе электрощита установлен трехполюсный автомат, далее УЗО, затем УЗМ. После реле напряжения планировал подключить стабилизатор.

Выбираем мощность стабилизатора

В подвале расположен гараж и бойлерная с газовым котлом. Смонтировано два приямка с дренажными насосами, мощностью около 600 Вт. Имеется глубинный насос для подачи воды в дом, мощностью 1,5Квт. Все это на одной фазе, ибо так спроектировано.

Первый этаж. Здесь кухня с духовым шкафом 2КВт, стиральная машинка 2,5КВт, бытовые электроприборы. Здесь есть возможность раскидать нагрузку по фазам.

На втором и третьем этажах только освещение и бытовые розетки. Там находятся спальные помещения.

Да, есть еще два кондиционера по 1, 5 КВт.

На участке присутствуют постройки, баня и гостиный домик. Там тоже спальные помещения, газ и дровяной очаг.

Получилась такая табличка распределения нагрузки по фазам:

Фаза АРозетки первый этаж, кухня, стиральная машинкаОколо 5 КВТ
Фаза ВРозетки второй и третий этаж, свет в доме, освещение улицаОколо 3 КВт
Фаза СРозетки подвал, котел, насосы, кондиционерыОколо 6 Квт

Выбрал стабилизатор с запасом, по десять киловатт на каждую фазу.

Подключение трехфазного стабилизатора

Далее начались приключения с Ресантой. .

Изначально я предусмотрительно рекомендовал стабилизаторы Лидер или Штиль, как самые лучшие на российском рынке. Но и цена на них кусается, несмотря на их преимущества.

Также заказчик был против Лидера потому, что уже имел опыт использования этой марки. Ему не понравилось, что устройство уходит в аварийный режим после пяти попыток включения при нестабильном напряжении.

Пришлось остановиться на Ресанте. Это простейший стабилизатор с минимумом электроники. Немножко жужжит, но к этому можно привыкнуть.

И тут я совершил просчет, заказав на дом трехфазный стабилизатор…

Не знал я, что моноблочный стабилизатор на три фазы, при пропадании одной из фаз, отключается полностью, оставляя дом без света.

Было выбрано трехфазное электромеханическое устройство фирмы «Ресанта», мощностью 30 КВа.

Подробнее о характеристиках различных стабилизаторов можно узнать в статье Как выбрать стабилизатор.

Заказывал через интернет магазин, после незначительных переговоров по телефону. Заказ привезли вовремя, доставка бесплатная, очень удобно.

Не отпуская курьера, на месте раздербанили фанерную упаковку. Внешний и внутренний вид не вызвал подозрений.

Довольно увесистый механизм оказался. Пришлось нести втроем в подвал, к месту установки. Курьера отпустили с добрыми пожеланиями и деньгами.

Приступил к подключению. В подключении нет ничего сложного, главное не перепутать вход с выходом.

Производителями установлена мощная колодка с болтовым соединением. В комплект входит набор бронзовых гаек, шайб и медных наконечников. Все это обеспечивает надежный контакт.

Опустим процесс подключения. Он требует лишь внимания и аккуратности.

Около часа провозился с опрессовкой наконечников и протяжкой гаек.

Наступил момент включения.

Всегда есть мандраж в такой момент, вдруг поднимешь клювик автомата и, вместо появления света, появится непредсказуемый бабах и писец.

Трижды перепроверил схему подключения и протянул контакты. Включаю.

Замигали УЗМ, предупреждая о скором включении. Щелчок, УЗМ включились и… моргнув, опять погасли. Пронаблюдав такую картину три раза, я спустился в подвал, решив оттуда наблюдать за стабилизатором.

При отключенной нагрузке и включенном стабилизаторе все было замечательно. Ресанта оптимистично выдавала показания по входному напряжению и выходному. Но стоило лишь включить нагрузку в доме, напряжение отключалось стабилизатором.

Варианта два:

Либо большие пусковые токи насоса в скважине дают перегрузку, либо где то плохой контакт ноля.

Как всегда, погрешив на себя, пошел протягивать нулевые контакты везде, где только можно.

После проверки попробовал опять подать напряжение. Ничего не вышло. Свет моргнув отключился.

За всем происходящим наблюдали строители из братской западной Украины. Непонятно, какие соображения возникали в их «западэнском» сознании, но я, как человек мнительный, осудил опять себя в происходящем.

После пяти неудачных попыток подачи напряжения через Ресанту, я углубился в глубокий электротехнический самоанализ.

Еще раз убедился, что схема подключения правильная. Нет сомнений.

Схема подключения трехфазного стабилизатора

Ага, я понял…

Трехфазной Ресанте не нравятся три УЗМ перед ней. Не понимает она их и все. Дело в том, что реле напряжения включаются после небольшой задержки. УЗМ убеждается в стабильности городского напряжения и после минутной задержки, включается.

Но три реле могут включаться не одновременно и из-за этого стабилизатор не запускается, принимая это за отсутствие одной из фаз.

Решил проверить это предположение и подключил Ресанту перед УЗМ.

Пробую включать.

Опять свет мигнул и пропал, реле напряжения мигают по очереди аварийной индикацией. Стабилизатор щелкает и уходит в аварию.

Иду проверять последнее предположение о плохом ноле к столбу.

На столбе висят два электрощита. Очень умные электрики запитали эти два электрощита на два разных дома одним четырехжильным кабелем.

Этот кабель заходит в щит моего заказчика, затем шлейфом с верха вводного автомата уходит на другой щит.

И как же они обошлись с нолем, эти варвары от электричества?

В моем уличном щите ноль приходит на болт в корпусе металлического щита, от него, разрываясь, идет к соседу и еще один провод на счетчик.

Всего под болтом три жестких провода сечением 10мм2. Контакт весьма сомнительный и окислившийся со временем.

Я отключил соседа и переделал соединение под отдельный болт с хорошими шайбами. Все провода зачистил от окисления.

Проделав все эти известные электрику мантры, я вернулся к алтарю стабилизатора. Внутренне перекрестился и включил.

Изменений не произошло. Свет появился, затем моргнула фаза «В» и Ресанта ушла от нас в аварию.

Я стал уже тупо включать стабилизатор, так как больше доступных идей у меня не было. Видимо уже подсознательно принял идею дожечь это устройство прибалтийских производителей.

Почему бы им не остановиться на шпротах и оставить попытки прорыва в электротехнике?!

Итак, включаю я Ресанту, она закономерно отключается, моргая фазой «В».

Хочу заметить, что между переборкой электрощита и установкой стабилизатора, прошло две недели.

За это время строители плодотворно работали ручным электроинструментом, болгарками, запускались дренажный и глубинный насосы. Все это происходило без проблем.

Иногда, правда, происходило отключение УЗМ по фазе «В»… Но тогда я не придал этому значения. Отключалось, затем включалось, после возвращения напряжения в разумные пределы.

Если все работало ранее и перебои стали возникать после подключения трехфазного стабилизатора Ресанта, значит дело в нем.

Я решил тупо дожечь прибор и обратиться по гарантии. Где — то после десяти попыток из Ресанты раздался хлопок, повился дымок и выбило автомат.

На этом я остановился. Разобрал схему, отсоединил стабилизатор. Позвонил в гарантийный центр и спокойно объяснил, что стабилизатор после включения вышел из строя.

Ни капли не соврал при этом.

Собственно, это были жесткие испытания стабилизатора Ресанта при нестабильном ноле и отгоравшей наверху столба злополучной фазе «В»…

Уже позже я залез на столб и перекрутил все орехи на СИПе на ниледовские. Простите меня за несусветное словообразование, но как еще сказать, на великом и могучем, об изделиях фирмы Niled?

Действительно, отходящий провод на фазе «Бе» обуглился и давал знать о своем предсмертном состоянии периодическим исчезновением контакта. Это приводило к отключению УЗМ и уходу Ресанты в аварию.

То, что электричество стало пропадать при запуске стабилизатора, а до этого выключалось редко, тоже можно объяснить.

Думаю, что стабилизатор Ресанта при включении создает высокий пусковой ток, обусловленный наличием автотрансформатора в схеме.

Автотрансформатор состоит из катушки с большим количеством витков.

Плохой контакт на столбе не выдерживал тока такой величины, напряжение пропадало, стабилизатор отключался. Цепная реакция.

Возврат стабилизатора в сервисный центр

Далее я должен отметить порядочность продавца Ресанты, назову его здесь Алексеем.

Алексей прочувствовал всю сложность моей ситуации, проявил глубокое понимание обстановки и предложил мне доставить стабилизатор в сервисный центр, правда самому, в Москву. Благо я сам из Подольска, так что недалеко.

Не буду описывать свои дорожные приключения до сервиса.

Ездить пришлось два раза. В первый раз отвез моноблочный трехфазник на сервис, получил талон на заявку об осмотре устройства.

Через три дня Алексей вышел на связь.

За это время я размышлял о возврате денег за неисправное устройство не прошедшее полевых испытаний и не оправдавшее надежд. Думал также и о замене на три однофазных десяти киловатных стабах.

Изучал отзывы о Ресанте. Было много негатива, но был и позитив.

Ресанта сделала качественный скачок в сборке оборудования. Ранее внутри была безобразно наляпанная пайка. Провода просто отваливались.

Теперь все собрано без пайки на разъемах. А места, где пайка сохранилась, пропаяны очень качественно.

Электронная линейка стабилизаторов реализована на реле. Реле щелкают с шумом и обеспечивают низкую точность и скорость стабилизации.

Электромеханическая модификация довольно точно и плавно стабилизирует. Немного жужжит, как говорилось ранее. Но к чему не привыкнет русский человек ради значительной экономии?

Остановился на замене трехфазного устройства на три, десяти киловаттных, электромеханических.

Обмен был произведен вежливо, в сервисном центре на Нагатинской.

И вот я счастливый обладатель трех блочных устройств, прибалтийской сборки, надежно установленных в багажнике моего авто, стремящемся на юг от Москвы, соблюдая скоростной режим, естественно.

Однофазное подключение

Подключить однофазные стабилизаторы было несложно. У них уже не было болтового соединения. На входе установлен силовой разъем – клемма.

Я сохранил схему подключения и установил Ресанту после УЗМ. Сделано это было для того, чтобы при возникновении аварийных напряжений стабилизаторы не уходили в режим аварии. Ведь при напряжении выше 260 Вольт стабы отключаются, выжидают некоторое время и делают попытку включения.

Если после пяти таких попыток напряжение превышает 260 Вольт, то происходит переход в аварийный режим и нагрузка отключается. Повторное включение возможно только с помощью человеческих рук.

Такая защита от перенапряжений установлена на большинстве современных стабилизаторов.

Итак, включаем!

Взвожу вводный автомат в электрощите, начинают моргать индикаторами реле напряжения, выдерживая несколько секунд до включения.

Щелчок, УЗМ пропускают сетевое напряжения к стабилизаторам и, через несколько секунд в доме загорается свет…

Жду некоторое время и выдыхаю.

Электросеть дома перешла в рабочий режим.

Индикаторы реле светятся спокойными зелеными огоньками, стабилизаторы показывают входное и выходное напряжение.

Индикаторы Ресанты показывают и уровень подключенной нагрузки.

Это десятисегментная шкала, по которой можно судить о мощности подключенных электроприборов.

Приключения с Ресантой окончены. Теперь приборы спокойно жужжат в подвале дома.

Прошел месяц после установки оборудования, полет нормальный.

Сначала устройства стояли на полу.

Через неделю установили стабилизаторы на стеллаж. Так это выглядит сейчас.

Заказчик пожелал установить все на одну полку, хотя рекомендуемое расстояние между блоками около полуметра.

Достоинства и недостатки стабилизаторов Ресанта

Оказался ли эксперимент с установкой прибалтийских стабилизаторов, собранных в Китае, оправданным?

Думаю да.

Ресанта – самая продаваемая марка электроприборов в России. Производители заметно улучшили качество своих изделий.

Первый установленный мною стабилизатор перенес ужаснейшие полевые испытания двумя критичными неисправностями: нестабильным нолем (это самое страшное, что могло случиться) и отсутствием одной из фаз.

По сути трехфазник стойко реализовывал заложенные в него функции, отключая напряжение.

Он как бы говорил мне, хватит издеваться надо мной, залезь на столб, приведи городское напряжение в норму и я буду достойно работать!

Выбор трехфазного стабилизатора был ошибкой, но в результате я произвел замечательный краш тест, при экстремальных для этого устройства ситуациях.

Тут производителям Ресанты стоит подумать о реализации защиты от таких случаев.

Например, предусмотреть индикацию об ошибке входного напряжения, его нестабильности. В описании сказано, что существуют сигналы, оповещающие об аварии, но таких оповещений я не наблюдал. Это недостатки изделия.

Делаю вывод:

Ни в коем случае не устанавливать на жилой дом трехфазный стабилизатор.

За исключением дома, где есть трехфазные потребители, например электродвигатели насосов или мощные устройства кондиционирования.

Если остановили свой выбор на устройствах от Ресанты, то рассматривать электромеханическую линейку изделий.

Они обеспечивают более точную и плавную регулировку напряжения, без скачков и моргания.

Это можно отнести к достоинствам стабилизаторов Ресанта. Доступна и цена на эту продукцию

Да, стабилизаторы Ресанта можно приобретать для питания бытовых электроприборов!

Их качество улучшилось за последнее время. Существует и достойная сервисная поддержка.

С поддержкой, продавцами ,тоже нужно уметь разговаривать. Все мы люди и никто не любит, когда сразу начинается ругань. Спокойно изложите свою историю и вежливо поинтересуйтесь о способах решения проблем.

Установленные мною стабилизаторы мерно жужжат в подвале уже месяц. Пройденное время докажет или опровергнет мои оптимистичные утверждения.

elektrikpodolsk.ru

Как защитить домашнюю электропроводку стабилизатором напряжения

Вы здесь: Когда мы рассказывали об устройствах защиты сети от перенапряжения, особое внимание было уделено бесперебойникам и данным устройствам. Автоматические стабилизаторы могут использоваться где угодно: в квартире, частном доме и даже на даче. Стоимость устройств не слишком велика, а установка и подключение стабилизатора напряжения своими руками не представляет ничего сложного. Далее мы как раз поговорим о том, как самостоятельно установить и подключить защитную аппаратуру на весь дом либо квартиру, предоставив пошаговую инструкцию по монтажу!

Шаг 1 – Определяемся с типом защиты

На сегодняшний день существуют стационарные стабилизаторы напряжения, установка которых производится на весь дом и мобильные модели, которые способны обслуживать один либо несколько отдельных электроприборов. Помимо этого стационарное оборудование может быть трехфазным либо однофазным, в зависимости от условий применений. Подключение своими руками в этом случае имеет свои отличия: то ли Вы будете подсоединять прибор к 220 В, то ли к 380.

Как правило, в частных домах и квартирах правильнее всего будет подключить однофазный стабилизатор напряжения к сети возле распределительного щитка, что позволит защищать всю сеть от перегрузок. Именно поэтому инструкция по подключению будет предоставлена для однофазного стационарного электроприбора.

Шаг 2 – Выбираем место установки

При установке своими силами дела обстоят куда сложнее, т.к. если Вы неправильно установите корпус в доме, может произойти в лучшем случае выход защитного прибора из строя, не говоря уже о таких последствиях, как пожар.

Итак, чтобы самому установить стабилизатор напряжения в помещении, учитывайте следующие рекомендации:

  • комната должна быть сухой и хорошо вентилируемой, т.к. одной из главных причин поломки устройства является появление конденсата внутри корпуса;
  • при установке изделия в нише, позаботьтесь о том, чтобы отделочные материалы были пожаробезопасные – кирпич, бетон, металл либо стеклотекстолит;
  • соблюдайте воздушный зазор между корпусом техники и стенками, со всех сторон отступ должен быть не меньше, чем 10 см;
  • если Вы решите установить стабилизатор напряжения на стене своими руками, позаботьтесь, чтобы подставка (либо анкера) смогла выдержать вес настенного корпуса.

Рекомендуем также просмотреть наглядную видео инструкцию по установке и подключению аппарата на стене в доме:

Как правильно осуществить монтаж

Шаг 3 – Производим подсоединение к электросети

На самом деле самостоятельно подключить стабилизатор напряжения к сети в доме довольно просто. Сзади устройства находится клеммная колодка на 5 разъемов. Обычно очередность подключения проводов следующая (слева направо): вводные фаза и ноль, заземление, фаза и ноль, идущие на нагрузку. На фото ниже Вы можете увидеть расположение разъемов:

Все, что Вам нужно, правильно выбрать сечение кабеля по мощности и току, после чего произвести монтаж своими руками, согласно схеме (для однофазного устройства):

Требования и рекомендации к подключению стабилизатора напряжения своими руками:

  1. Обязательно перед электромонтажными работами отключите электроэнергию на вводном щитке.
  2. Дополнительно защитите изделие автоматическим выключателем и УЗО, что продлит его срок службы. Установить автоматику рекомендуется после счетчика, но перед защитой от перенапряжения.
  3. Бытовая электросеть обязательно должна иметь заземляющий контур. Производить подключение без заземления запрещается из соображений электробезопасности.
  4. Установка стабилизатора напряжения в доме перед счетчиком запрещается, и добиться размещения защиты до прибора учета электричества очень сложно. Лучше производить монтаж так, как показано на схеме выше.
  5. Нельзя производить подключение аппарата сразу же после того, как Вы занесете его с мороза в дом. Пусть электроника «отойдет» и весь конденсат внутри испариться, иначе, как мы уже говорили Выше, срок службы устройства резко сократится. Сюда же можно отнести запрет на подключение изделия на улице.
  6. Защита, мощностью менее 5 кВт подключается напрямую к розетке. Такой вариант идеально подходит для гаража, загородного дома и дачи. Некоторые производят установку мобильного стабилизатора напряжения отдельно на компьютер, телевизор, котел, кондиционер, генератор либо стиральную машину, что позволяет защитить только определенный вид бытовой техники.
  7. Если Вам нужно подключить устройство защиты от перенапряжения в трехфазной сети, лучше купите три однофазных аппарата на 220в и подключите их по схеме звезда, чем один на 380 Вольт. Так Вы сэкономите деньги не только на покупке стабилизатора, но и на его ремонте (отремонтировать однофазное устройство на порядок дешевле, нежели трехфазное).
  8. После электромонтажных работ проверьте правильность подключения и установки, включив вводные автоматы на распределительном щите. Если ничего не гудит, не трещит и не искрит, значит, Вы все сделали правильно.
  9. Запрещается подключать устройство к нагрузке большей мощности. Запас мощности защиты должен составлять от 20 до 30%.
  10. Правильная схема монтажа обычно обозначена на корпусе продукции. В первую очередь ориентируйтесь на нее, но если подсказка от производителя отсутствует, рекомендуем производить подсоединение согласно данной инструкции. Все популярные модели (от фирм Ресанта, Лидер) следует подключить именно по этой технологии.

Вот и вся технология установки и подключения стабилизатора напряжения своими руками. Как Вы видите, ничего сложного нет, главное учитывать все требования и рекомендации. Напоследок хотелось бы отметить, что ежегодно Вы должны проверять надежность соединения проводов в клеммной колодке и при необходимости подтягивать винтики.

Также читают:

Как правильно осуществить монтаж
Другие статьи по теме
  • Как определить короткое замыкание в сети?
  • Правила первой помощи при поражении током

  • samelectrik.ru

    Ввод в эксплуатацию стабилизаторов напряжения

    Место установки стабилизатора. Хоть современные модели стабилизаторов и характеризуются низким уровнем шума, но он все же существует, поэтому при выборе места установки выбирайте нежилые или подсобные помещения.

    В помещении, где будет установлен прибор, должен соблюдаться диапазон температур, который указан в технических характеристиках к прибору. Как правило, электромеханические модели могут эксплуатироваться от +5 до +45°С, а релейные допускают своё использование при отрицательной температуре -5°С. Верхний предел температур довольно высокий, но, при попадании прямых солнечных лучей, он легко может быть превышен, поэтому следует избегать солнечных участков. При своей работе стабилизатор выделяет тепло и для его отвода требуется вентиляция. Обратите внимание на корпус агрегата, он имеет вентиляционные жалюзи, которые не должны быть плотно придвинуты к стене или другой поверхности. Минимально допустимый зазор должен составлять не менее 60 см. Избегайте установки прибора на тканевые поверхности, это также может нарушить отведение тепла.

    Выбор кабеля для подключения. При установке стабилизатора необходимо правильно подобрать провод — материал, сечение и рабочее напряжение. Неправильно подобранные провода могут не выдерживать нагрузку по току и начнут нагреваться, а это пагубно скажется на пожаробезопасности.

    Если говорить о выборе материала, из которого изготовлен провод, то лучше остановить свой выбор на меди. Этот материал лучше проводит ток, выдерживает большие нагрузки и более безопасный, чем алюминий.

    Характеристика провода по рабочему напряжению может быть 380 и 220V. Провод, рассчитанный на 380 пригоден для использования, как в однофазной, так и в трехфазной сети. А кабель с рабочим напряжением 220, можно использовать только для однофазной сети.

    Далее выбираем сечение кабеля, от которого зависит максимально-допустимая нагрузка. Для расчета сечения кабеля при установке стабилизатора используют следующую формулу: мощность стабилизатора (в вольт-амперах) делим на минимальное входное напряжение. Результатом расчета будет максимальная сила тока на выходе. Далее, по таблице, находим силу тока и соответствующее для нее сечение кабеля. Если получаем значение, которого нет в таблице, выбор делаем в сторону увеличения толщины кабеля. Например, у вас ток равен 20А. Такого показателя нет в таблице, соответственно сечение кабеля выбираем, как для 23А. Такой выбор даст определенный «резерв» в случае увеличения нагрузки.

    Ток, А

    Сечение кабеля, мм

    11

    0.5

    15

    0.75

    17

    1

    23

    1.5

    26

    2

    30

    2. 5

    41

    4

    50

    6

    80

    10

    100

    16

    140

    25

    Для подключения заземления требуется кабель с сечением 2.5мм. Заземление — это обязательное условие при установке стабилизатора и предохраняет от поражения электрическим током.

    Выбор автоматического выключателя. Установка автомата — условие не обязательное, но автоматический выключатель может предохранить стабилизатор от перегрузки и короткого замыкания. Автоматический выключатель следует подбирать, исходя из его мощности, которая указана в амперах. Мощность автомата должна превышать максимальную силу тока, расчет которой вы проводили при выборе сечения кабеля.

    Перейдем непосредственно к подключению стабилизатора и рассмотрим все возможные варианты на моделях фирмы «Ресанта».

    Подключение однофазного стабилизатора после счетчика (на все помещение). Установка стабилизатора на вводе, перед нагрузкой — самая распространенная схема. После счетчика, в разрыв фазного провода устанавливаем автоматический выключатель (не обязательно). Выход из автомата подключаем на вход стабилизатора, а выход стабилизатора на разводку помещения. Стабилизатор имеет три контакта для подключения: вход(фаза), выход(фаза), нуль.

    Последовательность действий:

    1.       Фазу от вводного автомата подключаем на вход(фазу) стабилизатора

    2.      Выход(фазу) стабилизатора подключаем к проводу нагрузки.

    3.      Нулевой контакт стабилизатора соединяем с нулевым проводом сети (без разрыва).

     

    В некоторых моделях стабилизаторов схема подключения состоит из четырех контактов: фаза(вход), нуль(вход), фаза(выход), нуль(выход). При таком подключении фазный нулевой провода сети подключаем к соответствующим клеммам на входе стабилизатора и соответственно, провода нагрузки соединяем с контактами на выходе агрегата.

    Розеточное подключение однофазного стабилизатора к сети 220V. Такая схема подключения актуальна, когда планируется использовать стабилизатор, как защиту одного или нескольких потребителей. Это может быть насос, котел отопления или компьютер.

    Последовательность действий:

    1.      На вход стабилизатора подключаем электрический провод оснащенный вилкой.

    2.      На выход стабилизатора – провод на конце с розеткой. Последовательность подключения фазы роли не играет.

    3.      Включаем стабилизатор в сеть и к нему подключаем потребителей.

     

    Схема подключения стабилизатора к сети 380V. В основном, трехфазные сети используются на производстве и в промышленных помещениях, но не исключены случаи, когда и в частных домах применяется такая система питания. Для защиты от перепадов напряжения в такой сети возможно два варианта подключения стабилизаторов. Первый — это установка трехфазного агрегата, но такое возможно только в том случае если имеются трехфазные потребители, что для бытовых приборов очень редкий случай. И второй вариант, более оптимальный – установка трех однофазных стабилизаторов, когда идет равномерное разделение нагрузки на все три фазы.

    Эта схема установки имеет неоспоримые преимущества: вы получаете полностью независимые друг от друга сети, в случае выхода из строя одного из стабилизаторов две оставшиеся будут работать в нормальном режиме. При выходе из строя одного трехфазного стабилизатора, все помещение останется обесточенным.

    Еще одно неоспоримое преимущество это возможность выбора трех разных моделей стабилизаторов, что позволяет подобрать прибор под определенный вид оборудования. На рисунке представлена схема подключения трех однофазных стабилизаторов в одну трехфазную группу. Каждый из стабилизаторов подключаются по такой же схеме, как и для сети в 220, для каждой из фаз отдельно. Из схемы видно, что стабилизируется каждая фаза отдельно и агрегат подключается в разрыв сети. Нулевой провод подключается неразрывно.

     

    Основные правила при установке и вводе в эксплуатацию стабилизатора напряжения.

    • Не спешите устанавливать и подключать стабилизатор, если он был приобретен в холодное время года или если транспортировка проводилась при отрицательной температуре. Рекомендуется выдержать прибор в течении суток в помещении где он будет эксплуатироваться, так как при перепаде температур может образоваться конденсат, который способен привести к поломке.
    • Перед выполнением работ по установке необходимо отключить напряжение. Сделать это можно в щитке на входе, обесточив автоматы. После этого не поленитесь проверить отсутствие напряжения с помощью индикаторной отвертки.
    • При подключении соблюдайте очередность подключения проводов и производите подключение соответственно схемам.
    • После подключения стабилизатора возобновляют подачу электроэнергии и выключатель прибора ставят в положение «включено», при этом должен загореться световой индикатор. Далее работа стабилизатора будет проходит в автоматическом режиме.
    • При эксплуатации помните про перегрузку прибора. Ее номинальная мощность не должна превышать мощность стабилизатора. Даже если изначально мощность стабилизатора была выбрана правильно, всегда может возникнуть необходимость подключения новой техники, не учтенной при покупке стабилизатора, что может вызвать перегрузку и поломку стабилизатора.
    • Желательно проводить профилактическое обслуживание стабилизатора: проверку соединения контактов и уборку пыли с оборудования. Не стоит делать влажную уборку, так как корпус не защищен от попадания влаги.

    Если после прочтения статьи у вас остались вопросы, обращайтесь в нашу службу поддержки на сайте или посетите наш специализированный магазин в г Екатеринбурге по адресу ул. Новостроя 1А, офис 104.

     

    Каждая единица оборудования в нашей компании имеет идентификационные данные, они регистрируются на всех этапах: при производстве, продаже и даже ремонте в СЦ.
    Покупая у нас продукцию Ресанта, Huter и Вихрь, Вы можете быть уверены в её 100% подлинности!
    Даем гарантию на все агрегаты и оборудование на этом сайте!
    Покупая у нас Вы можете быть уверены в том что получите 100% оригинальный товар, гарантию и обслуживание в нашем Сервисном центре

     + Маска «Хамелеон» **  только для физ. лиц при покупке сварочного аппарата с этим стикером за наличный расчет или по карте в офисе магазина.

     + Пачка электродов **  только для физ. лиц при покупке сварочного аппарата с этим стикером за наличный расчет или по карте в офисе магазина.

     +  ЕЩЁ   ПОДАРОК  **    только для физ. лиц при покупке сварочного аппарата с этим стикером за наличный расчет или по карте в офисе магазина.

     +  КРАГИ  сварщика  **  только для физ. лиц при покупке сварочного аппарата с этим стикером за наличный расчет или по карте в офисе магазина.

    Как подключить ресанта стабилизатор напряжения?

    Стабилизаторы напряжения приобретают не от хорошей жизни, и раз вы это сделали, то у вас, скорее всего уже есть или были проблемы с напряжением.

    Стандартный уровень напряжения согласно норм, должен быть 230 вольт (не 220, как многие до сих пор считают).

    Но в зависимости от места проживания (протяженность и загруженность линий электропередач) и возможных аварий в электросетях (обрыв нулевого провода, перегрузка), напряжение может быть либо стабильно заниженным-повышенным, либо просто ”скакать” в произвольных величинах.

    Когда приобретается маленький аппарат для защиты одного конкретного прибора – компьютер, холодильник, телевизор, котел, то с подключением проблем не возникает.

    На стабилизаторе имеется вилка и розетка. Тут разберется даже школьник.

    А вот если вы хотите установить мощный аппарат, для защиты электроприборов всего дома одновременно, тогда придется повозиться со схемой подключения.

    Что нужно для подключения

    Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:

    • трехжильный кабель ВВГнГ-Ls

    Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.

    • выключатель трехпозиционный

    Данный выключатель в отличие от простых, имеет три состояния:

    1включен потребитель №1 2выключено 3включен потребитель №2

    Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.

    Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.

    С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.

    • провод ПУГВ разных цветов

    Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.

    Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.

    Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.

    Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.

    Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п. Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока.

    В ниже описываемом способе как раз и будет рассматриваться такой вариант. Ведь очень часто эти аппараты вешают на стене в комнатах, прихожих, в свободном доступе для прикосновения.

    А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.

    Инструкция по подключению в щитке

    Первым делом монтируете в электрощитке, сразу после вводного автомата трехпозиционный переключатель.

    • в первом положении, когда язычок поднят вверх, напряжение будет подаваться в дом напрямую с электросети, без задействования стабилизатора

    Вдруг он у вас вышел из строя или нужно провести какие либо ревизионные работы. Не будете же каждый раз откидывать провода и обесточивать всю квартиру.

    • во втором положении II (язычок автомата смотрит вниз) – эл.снабжение будет идти через стабилизатор
    • положение «0» – все электроприборы отключены, как от стабилизатора, так и от внешней сети

    Выбираете место установки стабилизатора напряжения. Ставить где попало его тоже нельзя. Существуют определенные правила, которых следует придерживаться.

    Прокладываете от щитка до этого места два кабеля ВВГнГ-Ls.

    Каждый из них желательно промаркировать и сделать соответствующие надписи с обоих концов:

    • выход из стабилизатора

    Снимаете изоляцию с жил и сначала подключаете кабель в электрощитке. Фазу с того провода, что идет на вход стабилизатора, подсоединяете к выходным зажимам вводного автомата.

    Далее разбираетесь с кабелем стабилизатор-выход. Фазную жилу (пусть это будет белый провод), подключаете к контакту №2 на трехпозиционном выключателе.

    Ноль и землю с обоих кабелей сажаете на соответствующие шинки.

    Теперь нужно подать фазу непосредственно с вводного автомата на трехпозиционный. Зачищаете монтажный провод ПУГВ, оконцовываете жилы наконечниками НШВИ и заводите его с фазного выхода вводного автомата на зажим №4 выключателя.

    Все что остается сделать в щитке – запитать все автоматы с клеммы №1 трехпозиционника.

    Проделываете эту операцию опять же гибкими монтажными проводами.

    Таким образом по схеме вы подали фазу с вводного автомата на 3-х позиционный, а уже далее через его контакты распределили нагрузку, путем подключения через стабилизатор (контакт №2-№1) и напрямую без него (контакт №4-№1).

    В вашем конкретном случае данные номера контактов могут не совпадать с указанными здесь цифрами! Обязательно уточняйте все в инструкции или в паспорте на автомат.

    Подключение стабилизатора

    Теперь переходим к непосредственному подключению самого стабилизатора. Для того, чтобы подобраться к его контактам, может понадобиться снять внешнюю крышку.

    Пропускаете два кабеля (вход и выход) через отверстия и зажимаете под клеммы по следующей схеме:

    • фазную жилу входного кабеля стабилизатора затягиваете на клемме ВХОД (Lin)
    • нулевую жилу (синего цвета) к клемме N (Nin)
    • заземляющую жилу к винтовому зажиму с обозначением ”земля”

    Кстати, отдельной клеммы ”земля” может и не быть. Тогда данную жилу закручиваете под винт на самом корпусе аппарата.

    Есть модели с клеммниками всего под 3 провода. В них назад возвращается только фаза.

    Ноль на питание электроприборов берется с общего щитка.

    Теперь когда вы подали напряжение от щитка до стабилизатора, вам нужно вернуть это напряжение, но уже стабилизированное обратно в общий щит.

    Для этого подсоединяете кабель — выход со стабилизатора.

    • его фазную жилу к зажиму ВЫХОД (Lout)
    • жилу заземления, туда же где и заземляющая жила от входного кабеля

    Еще раз визуально проверяете всю схему и закрываете крышку.

    Первое включение нужно осуществлять без нагрузки. То есть все автоматы кроме вводного и того, что идет на стабилизатор должны быть отключены.

    Запускаете его на холостой ход и контролируете работу. Входные и выходные параметры, нет ли посторонних шумов или писка.

    Также не помешает проверить правильность и точность тех.данных, что высвечиваются на электронном табло.

    Если у вас дома трехфазная сеть 380В, то для такого подключения рекомендуется использовать 3 однофазных стабилизатор напряжения, с подключением каждого по отдельной фазе.

    Более подробно о преимуществах трехфазных и однофазных аппаратов и когда какой нужно выбирать, можно ознакомиться в статье ”Как выбрать стабилизатор напряжения для дома”.

    1Неправильное расположение и место установки

    У вас может быть все идеально подключено и соблюдена схема, но стабилизатор будет постоянно греться и отключаться, либо на его табло выскакивать ошибки.

    О том, где можно, а где ни в коем случае нельзя располагать данный прибор подробно читайте в статье ”Где устанавливать стабилизатор напряжения в доме”.

    2Подключение через простой автомат, а не трехпозиционный

    Безусловно, данный пункт и ошибкой то трудно назвать. Тем более 90% потребителей именно так и делают.

    Однако, этот выключатель может реально спасти ваш прибор от выхода из строя.

    Дело в том, что переключение стабилизатора напряжения из обычного режима в режим “транзит”, должно выполняться с определенной последовательностью.

    Сначала вы отключаете автоматы на панели стабика.

    Потом сам переключатель переводите в положение ТРАНЗИТ или БАЙПАС.

    И только затем снова включаете автоматы.

    Многие забывают об этом и делают переключение под нагрузкой. Что в итоге приводит к поломкам.

    С 3-х позиционным автоматом такое исключено. Вы автоматически переключаете напряжение, без каких либо манипуляций на стабилизаторе. И все это одной клавишей!

    Никакой последовательности запоминать не нужно. Так что данную процедуру можно смело доверять любому члену семьи.

    3Использование для подключения кабеля меньшего сечения чем вводной

    Вы можете выбирать меньшее сечение, только когда запитываете отдельные электроприемники.

    Если же у вас на стабилизаторе сидит весь дом, то будьте добры соблюдать параметры по вводу согласно всей общедомовой нагрузке.

    4Отсутствие наконечников на многожильных проводах

    Почему-то многие забывают, что зачастую через стабилизатор проходит вся нагрузка вашего дома. Ровно такая же как и на вводом автомате.

    При этом в электрощите все провода обжаты, даже на выключателях освещения с минимальными токами, а вот на клеммниках стабилизатора или его автоматах, постоянно можно встретить голый провод просто поджатый винтом.

    Поэтому не скупитесь, и заранее вместе с аппаратом приобретайте соответствующие наконечники.

    5Выбивает общий автомат в щитке

    Иногда после подключения стабилизатора, начинает выбивать вводной автомат. При этом без стабилизатора, все нормально и ничего не отключается.

    Многие сразу грешат на неправильную схему подключения или дефект аппарата. Везут его на гарантийный ремонт и т.п.

    А причина может быть совсем в другом. Если у вас через чур низкое напряжение 150-160В, то при его повышении до стандартных 220-230В, ток в сети значительно вырастет.

    Отсюда и все проблемы. Обращайте на это внимание, прежде чем нести его обратно в магазин.

    Источники — Кабель.РФ

    Владельцам индивидуальных домов с электрическим вводом в дом от воздушной линии электропередач часто приходится сталкиваться с перепадами напряжения в электросети. По причине того, что сосед включает электрообогреватели, сварочный аппарат или мощный станок. В результате в линии падает напряжение ниже допустимого предела в 198 Вольт. Лампочки начинают моргать или тускло гореть, перегорает бытовая техника или компьютер.

    Эффективно решить проблему и нормализовать напряжение поможет стабилизатор. Он всегда при скачках или падениях напряжения, его стабилизирует и выдает номинальное напряжение около 220 Вольт. С его помощью можно защитить как отдельные наиболее уязвимые электропотребители: компьютер, электронику газового котла, холодильник, телевизор и т. п. так и весь дом сразу.

    Для частного дома лучше и понадежнее всего установить у электрощита один мощный стабилизатор напряжения на весь дом, чем ставить несколько возле каждого электропотребителя.

    Как выбрать стабилизатор напряжения.

    Как выбрать стабилизатор напряжения. при покупке стабилизатора необходимо обязательно обратить внимание на его технические характеристики, что бы они подходили под ваши конкретные условия и было обеспечено надежное электропитание вашего дома.
    На что следует обратить внимание:

    1. Тип установки. На левой картинке устройство предназначено для установки на стену (часто используется для газовых котлов). По центру- для отдельно стоящей бытовой или электронной техники. И справа- для защиты всего дома целиком.
    2. Напряжение в электрощите. Если у Вас однофазный ввод на 220 Вольт, значит Вам подойдет соответствующий стабилизатор напряжения на 220 В. А если на 380, тогда придется купить дорогостоящий трехфазный на 380 Вольт. Но можно использовать для этих целей и 3 однофазных, но об этом в конце статьи.
    3. Максимальная выходная мощность. Для ее вычисления надо сложить максимальную потребляемую электрическую мощность в Ваттах или Киловаттах всех электроприборов, которые будут подключены с добавлением 20 процентного запаса. Эти данные Вы найдете в технических паспортах или на задней стороне бытовой техники.
    4. Диапазон изменения входных напряжений. Каждая модель стабилизатора рассчитана на стабилизацию определенной максимальной и минимальной величины напряжения. При выходе за эти пределы устройство не будет эффективно работать и отключится. Для определения минимального напряжения в электросети необходимо измерить его мультиметром в часы максимальных нагрузок и желательно зимой, когда дополнительно включаются обогреватели.
    5. Перегрузочная способность определяет какое время сможет работать устройство при перегрузках. Чем она выше, тем надежнее устройство.
    6. Защита от короткого замыкания на выходе. Позволяет отключать линию на электропотребители при возникновении в ней токов перегрузок или короткого замыкания.
    7. Быстродействие. Если у Вас происходят резкие колебания величины напряжения стоит обратить внимание на электронные приборы, в других случаях подойдут и более надежные электромеханические стабилизаторы.
    8. Условия эксплуатации. Обращайте внимание на них при покупке, если планируется эксплуатация в неотапливаемом помещении или наоборот, в жарких условиях.
    9. Дополнительные возможности:
    • Присутствие дисплея. показывающего параметры работы.
    • Ручная регулировка величины выходного напряжения.
    • Возможность самодиагностики.
    • Управление с компьютера.
    • Световая и звуковая индикация.

    Схема подключения стабилизатора напряжения

    Однофазный стабилизатор напряжения на 220 Вольт проще всего подключить своими руками. Открываем паспорт или ищем надписи на клеммах устройства. Как правило, первые два контакта- это входные L- фаза и N- ноль. К ним подключается электропитание от счетчика через автомат, номинал которого должен соответствовать максимальной мощности стабилизатора. Для 2 кВт- 10 А, для 3.5 кВт- 16 А и для 5 кВт- 25 Ампер. Важно не перепутать фазу с нулем. Как определить фазу читаем здесь .

    На выходные контакты подключаются электроприборы. Я после стабилизатора пускаю фазу на них через несколько автоматов в электрощите.

    Иногда нулевой контакт может быть один. В таком случае входящий и выходящий ноль садим вместе.

    На контакт PE подключается заземляющий провод с корпуса электрощита.

    Для частного дома с вводом на 380 Вольт не имеет смысла покупать дорогой трехфазный выпрямитель. Дешевле будет использовать три однофазных. Но имейте ввиду, в таком случае нельзя подключать на выходе электродвигатели, сварочный аппарат и другие устройства, рассчитанные на работу от 380 Вольт.

    Подключается по одному стабилизатору на каждую фазу аналогично первой схеме подключения на 220 Вольт.

    при подключении однофазного стабилизатора индикатор светится на фазах и нулях входа и выхода, светится и «земля» (причем она под напряжением) и даже корпус щипает. Поменял фазу и ноль на входе все стало в норму (фаза светится, а ноль и земля нет). Правда включал пока без нагрузки. Неужели при сборке перепутали входные фазу и ноль. Подскажите пожалуйста что делать

    Приветствую всех. Подскажите пожалуйста ответ на такой вопрос: хочу поставить стабилизатор на вводе в дом, питание трехфазное, мощность потребления 8 кВт, ставить трехфазный на 9 кВт или три однофазных по 3 кВт на каждую фазу и правильно ли это? Я в электрике не особо, но я так понимаю если общая мощность 8 кВт, то по трем фазам с учетом разделения на каждую будет 2,6 кВт? Заранее спасибо.

    Игорь, здравствуйте. Общая мощность и мощность на фазу это разные понятия. Общая мощность может быть 8 кВт, но при этом на первой фазе будет 1 кВт, на второй 2 кВт, а на третьей 5 кВт. Вам надо замерить токи по фазам и подбирать стабилизатор по мощности наиболее загруженной фазы (если он трехфазный) или однофазный (три штуки на каждую фазу) по мощности фазы.

    Здравствуйте! Помогите, пожалуйста! Загородный дом,три фазы, 10 кВт. Можно ли поставить по стабилизатору на каждую фазу, если в доме работает электрический котел на 380В. В статье сказано, что нельзя подключать приборы, расчитанные на работу от 380В.А почему нельзя? Спасибо.

    Виктория, здравствуйте. Дело в том, что некоторые приборы работают без нулевого провода, по схеме соединений звезда (чаще) или треугольник (реже). Для таких устройств либо нужен трехфазный стабилизатор, либо стабилизаторы включать в обход котла, то есть стабилизировать напряжение во всей электропроводке кроме котла.

    Добавить комментарий

    Как подключить стабилизатор напряжения ресанта

    как подключить стабилизатор Ресанта АСН 10000 Н/1-Ц Lux

    Зарегистрирован: 15 авг 15:46

    Я живу в 5-и этажном общежитие и в вечернее время у нас падает напряжение до 190-180В

    Вот купил стабилизатор Ресанта АСН 10000 Н/1-Ц Lux от него хочу за питать 3 нагрузки холодильник Stinol 101ER,СМ Electrolux EWT 825,микроволновку LG MS2041US

    Почему 6 мм2, а не 10?

    Первая колонка — для одиночного провода, проложенного открыто.

    Стабилизаторы напряжения Ресанта

    Стабилизатор напряжения — это электрический прибор, основная цель которого предохранение бытовой техники от перепадов напряжения и, как следствие, от преждевременного выхода ее из строя.

    Ресанта представляет различные модели подобных устройств для дома. Прежде, чем купить нужный прибор, следует определиться с необходимой мощностью. Представляем вашему вниманию основные категории такого оборудования.

    Однофазный стабилизатор напряжения Ресанта применяется для защиты электроприборов с мощностью до 5 кВт от короткого замыкания и перепадов напряжения.

    Прибор оснащен частотным фильтром входного и выходного напряжения. Предусмотрено аварийное отключение, которое срабатывает при повышении показателей напряжения. Данное устройство можно крепить на стену.

    Трёхфазный стабилизатор напряжения Ресанта. Предназначен для домов, где подведены три фазы, или там, где установлены агрегаты, которые требуют 380В. Производятся только электромеханического типа. Достаточно дорогостоящие приборы, но оправдывают себя, так характеризуются высокой практичностью в пользовании.

    Автоматические стабилизаторы напряжения Ресанта делятся на несколько подвидов: однофазные электромеханического типа, однофазные цифровые пониженного напряжения, однофазные электронного типа с цифровым дисплеем, однофазные цифровые настенные серии LUX, бытовые однофазные цифровые, трехфазные электромеханического типа.

    Как подключить стабилизатор напряжения. Рассмотрим два возможных варианта:

    • 1 вариант подключение после счетчика. Такой вид подключения выбирают, когда нужно подключить весь дом (квартиру). После счетчика устанавливают автомат (автоматический выключатель), на вход прибора идет выход автомата. Очень важно подводить фазы к фазе. Также можно установить дополнительный автомат на само устройство. Схема: счетчик автоматический выключатель стабилизатор автоматы разводки.
    • 2 вариант розеточное подключение. К такому виду подключения прибегают в том случае, когда требуется оборудование большей мощности. На вход прибора подводят провод (на другом конце провода подсоединена вилка), на выход провод, на конце которого находится розетка. В этом случае фаза роли не играет. Длину провода вы можете корректировать, так как вам нужно. Схема: вилка провод (на вход) стабилизатор провод (на выход) розетка.

    Технические характеристики стабилизатора напряжения Ресанта заключаются в следующем:

    1. Мощность номинальная (Вт/А): 3000
    2. Частота (Гц): 50
    3. Диапазон (входное напряжение) (В): 240 430
    4. Стабилизационная точность: 220 2%
    5. КПД (при токе нагрузки 80%) (%): 97
    6. Охлаждение: воздушное
    7. Температура нагрева (максимальная) обмотки трансформатора (С): 70
    8. Регулировочное время (сек): 10
    9. Искажение синусоиды: отсутствует
    10. Защита (высоковольтная) (В): 260 5
    11. Защитный класс: ІР негерметизированный
    12. Температура окружающей среды во время работы (С):0 45
    13. Влажность воздуха (%): не более 80
    14. Размеры (мм): 810х430х530.

    Несмотря на то, что все модели Ресанта пользуются большой популярностью, так как сделаны очень качественно, однако и в них случаются поломки.

    Что же делать при неисправности стабилизаторов напряжения Ресанта?

    Первое, что нужно сделать это выяснить причину неисправной работы. Если вы не компетентны в этом вопросе, то лучше вызвать мастера либо отвезти прибор в ремонтную службу (фирму, где осуществлялась покупка). Профессионалы осмотрят аппарат и приступят к ремонту. Если он находится на гарантии, а вашей вины в поломке нет, то все будет абсолютно бесплатно.

    XXI столетие это время автоматизации и компьютеризации. Мы привыкли к комфорту, поэтому, если что-то выходит из строя, это нас очень беспокоит. Каждый потребитель электроэнергии понимает, что такое перепады напряжения и как может из-за этого страдать наша техника. Поэтому самый лучший вариант для того, чтобы уберечь наш быт от поломок приобрести соответствующее устройство от Ресанта, так как это гарантия исправной работы всех электроприборов в вашем доме. Конечно, выбор делать вам: тратить деньги на стабилизатор либо надеяться на то, что все обойдется. Однако лучше обезопасить себя, купив оборудование от компании Ресанта.

    Смотрите видео

    Причиной поломки бытовых электроприборов зачастую могут стать скачки напряжения в сети. Предотвратить подобные проблемы можно с помощью стабилизаторов напряжения, которые сглаживают помехи и искажения и оберегают приборы от поломки. В этой статье расскажем, как правильно подключить стабилизатор напряжения на примере прибора фирмы Ресанта.

    Где установить стабилизатор?

    Установка стабилизатора напряжения в квартиру требует грамотного выбора размещения. Лучше всего поместить прибор в кладовке, если таковая имеется. И без того не очень хорошо, когда электрический прибор большой мощности стоит под ногами. а если в квартире дети, то это вообще опасно.

    При этом, важно отметить, стабилизатор нужно разместить так, чтобы от его поверхности до стен со всех сторон оставалось сантиметров по 10 свободного пространства – это обеспечит нормальную вентиляцию устройства и защитит его от перегрева. Кроме того, материал стен, которые окружают стабилизатор, должен быть негорючим – голый бетон, кирпич, стеклотекстолит и т.д.

    Как подключить?

    Стабилизатор имеет три контакта для подключения:

    Контакты отмаркированы, а потому вы их вряд ли перепутаете. На контакт фаза-вход стабилизатора заводится провод фаза распределительного автомата (электросчетчика), к контакту фаза-выход подключается фаза нагрузки (электроприбора, который вы хотите обезопасить от перепадов напряжения), а ноль подключается и к нулю нагрузки, и к нулю распределительного автомата (см. рисунок).

    Важно! Все подключения проводите при обесточенной сети — предупредите соседей по площадке, отключите распределительный автомат и только затем приступайте к подключению.

    Комментариев пока нет!

    Как правильно подключить электрогенератор?

    Как правильно подключить электрогенератор, как резервный источник в доме или на объекте?

    Если заглянуть на просторы Интернет, можно найти не одну сотню рекомендаций и схем для подключения генератора, чем и пользуется большинство покупателей. Но большинство попыток оказываются, к сожалению, неудачными и приводят к обращению в сервисный центр, мы наблюдаем это постоянно. Именно поэтому мы решили дать основные рекомендации по подключению электрогенератора. Эта статья не является руководством к действию и носит чисто ознакомительный характер. Возможно, ее прочтение остановит вас от необдуманных поступков без соответствующего опыта и оградит от лишней траты денег на ремонт оборудования.

    Самый простой способ подключить генератор — через удлинитель в любую розетку помещения. Работает это следующим образом: при отсутствии электричества необходимо завести электрогенератор, дать ему прогреться и подключить через удлинитель к любой розетке в помещении. Согласитесь, довольно простая, на первый взгляд, процедура. Но нужно помнить, что генератор необходимо полностью отключить от центральной сети электроснабжения, иначе это закончится плачевно и обойдется в немалую сумму за ремонт. При такой схеме отключается входной автомат или выкручиваются пробки и необходимо отключить не только фазу, но и ноль! А так же очень важно не перегрузить эту линию. Оказывается, все уже и не так просто, как казалось. Ведь везде присутствует человеческий фактор и в один момент можно выполнить операции не в том порядке или что-то забыть. Способ довольно рисковый при его простоте.

    Следующий способ подключения электрогенератора — через трехходовой переключатель или перекидной рубильник. Это более безопасный способ подключения, который исключает одновременное использование электросети и генератора. Эта схема имеет три рабочих положения: подключена электросеть, подключен генератор или отключено все. При подключении перекидного рубильника к его верхним контактам подключается электросеть, к нижним генератор, а к средним энергопотребители помещения. Трехходовой переключатель подключается, поэтому же принципу. При отсутствии электричества, данная схема действует следующим образом: заводим генератор и даем время на его прогрев, переключаем рубильник в нижнее положение. При появлении электричества возвращаем рубильник на место и глушим генератор. Этот способ намного проще и безопаснее первого, но хотим обратить ваше внимание еще на один способ.

    Подключение генератора через АВР. Это полноценная система автоматического управления генератором. АВР — это панель автоматического ввода резерва, которая частично или полностью исключает участие оператора. Эта автоматика постоянно контролирует напряжение центральной сети энергоснабжения и, в случае его отсутствия, произведет запуск и прогрев генератора, после чего переключит нагрузку на резервный источник питания. При восстановлении напряжения в сети АВР произведет все операции с точностью до наоборот. Сначала произойдет переключение на основную сеть, а через время будет отключен генератор. Это самый простой и безопасный способ подключения генератора, но с одной оговоркой: для полной автоматизации процесса требуется генератор с автозапуском. На рисунке вы найдете наглядный пример подключения АВР, но самостоятельно производить монтаж без навыков довольно сложно и лучше воспользоваться услугами специалиста в этой области.

    На страницах нашего магазина вы найдете еще один вариант для создания полностью автоматической системы энергоснабжения без покупки АВР. Это генераторы с автоматической функцией запуска и ввода резерва, Huter DY6500LXA и Huter DY8000LXA. Данные модели генераторов уже имеют встроенную систему автоматического запуска, которая произведет пуск агрегата при отсутствии напряжения в сети и также самостоятельно его заглушит при появлении электричества. Для пуска данных моделей с электростартера требуется наличие аккумулятора .

    Если у вас есть вопросы, рады будем ответить на них. Воспользуйтесь формой обратной связи на сайте или посетите наш специализированный магазин в Екатеринбурге по адресу ул. Новостроя 1А, офис 105.

    Мы гарантируем качество и подлинность нашей продукции! Мы — официальные представители завода-изготовителя!

    Доставку делаем очень быстро!
    Как правило — в день заказа!
    Есть собственная курьерская служба!

    При получении, товар можно распаковать, проверить, запустить
    и включить!

    Делаем подарки и скидки именинникам, пенсионерам, ветеранам
    и любимым покупателям!

    Мы рады представить Вам весь ассортимент продукции торговых марок РЕСАНТА, HUTER, ВИХРЬ — это стабилизаторы напряжения, тепловая техника, сварочное оборудование, а так же измерительный инструмент и электротехническая продукция очень хорошо известная своим качеством среди профессионалов и любителей. Бензотехника и техника для сада HUTER — это неоспоримо идеальные по цене и качеству бензогенераторы, триммеры, мотокосы, газонокосилки и мотопомпы, модельный ряд которых не оставит равнодушным даже самого искушенного потребителя.

    Информация

    Источники:

    Как подключить стабилизатор ресанта 5000

    Поздравляем всех, кто не стал терпеть некачественное электроснабжение и приобрел стабилизатор напряжения. Это заметно выгоднее, чем ремонтировать вышедшую из строя бытовую технику по причине отвратительного питания. Если же «загубить» газовый котел или холодильник, можно пострадать и посильнее. Еще приятнее избежать возгорания электроники и пожара.

    Перед тем, как начать монтаж

    Перед тем, как заниматься установкой стабилизатора напряжения, следует убедиться в его способности обеспечить питанием весь дом. Проще всего проконтролировать номинал автоматического выключателя, установленного на входе схемы электроснабжения. В соответствии с нижеследующей таблицей можно определить максимальную мощность, которую ограничивает входной автомат.

    Номинальная мощность стабилизатора должны быть больше, причем с запасом. Изучая паспорт на приобретенный прибор, Вы обнаружите, что указанная для прибора величина падает до 75% при уменьшении напряжения в сети до 150-170В, в зависимости от модели.

    Если мощности стабилизатора недостаточно для питания всей техники в доме, будет правильно подключить к нему лишь часть потребителей энергии. Стабилизированное питание может быть подано только самым важным потребителям, о чем рассказано в статье «Стабилизатор для газового котла с защитой от скачков напряжения 220В, как выбрать», а также «Как выбрать стабилизатор для защиты холодильника от перепадов и скачков напряжения 220В».

    В любом случае следует внимательно ознакомиться с паспортом на изделие. Если прибор был доставлен к месту установки стабилизатора в частном доме или на даче при отрицательной температуре, его следует выдержать 2-3 часа в теплом помещении для просушки конденсата.

    Выбор места для установки прибора

    Установка стабилизатора напряжения может оказаться не самой простой задачей, так как необходимо выполнить несколько требований. Перечислим их в порядке важности, вдобавок к указанным в паспорте на оборудование:

    • исключается попадание влаги на поверхность аппарата;
    • необходимо обеспечить свободный обдув воздухом корпуса прибора;
    • выгодно расположить стабилизатор поближе к вводному щиту;
    • следует учесть, что работа электромеханического прибора сопровождается характерным шумом, а релейный аппарат издает щелчки;
    • должен быть обеспечен удобный доступ для подключения, контроля и обслуживания прибора;
    • оптимально разместить регулятор напряжения на стене или на полке.

    Пример подключения однофазного стабилизатора напряжения

    Подключение стабилизатора 220 вольт в простейшем случае может быть выполнено по одной из приведенных схем, в зависимости от того, в какой последовательности уже соединены счетчик и входной автомат. В любом случае необходимо обеспечить заземление стабилизатора. Суть подключения стабилизатора состоит в том, что напряжение из сети подается на вход стабилизатора, а к его выходу подсоединяются потребители электроэнергии.

    Варианты монтажа стабилизаторов напряжения

    На схемах подключения приведен вариант клеммной колодки на задней стенке стабилизатора напряжения с пятью контактами. Бывает, что клемма заземления размещается отдельно: к ней и нужно подсоединить заземляющий проводник. Иногда клемма N(ноль) всего одна, тогда оба нулевых провода: и входной, и для потребителей подсоединяют к ней.

    Перед непосредственным подключением стабилизатора необходимо обесточить электрическую сеть в помещении с помощью входного автомата. Затем следует убедиться, что оно действительно отсутствует с помощью индикатора или мультиметра. Включатель питания и переключатель байпас прибора должны находиться в выключенном состоянии.

    После выполнения электромонтажа подают питание на стабилизатор, а затем включают и его. Внутренний таймер прибора задерживает его запуск, раздается щелчок, и подается питание. На дисплее высвечивается значение выходного напряжения 220В. У большинства современных приборов на дисплее может появиться следующая информация:

    • символ L означает, что напряжение на входе опустилось ниже допустимого для работы прибора;
    • символ Н означает, что напряжение на входе поднялось выше допустимого для работы прибора;
    • символ СН означает, что суммарная мощность подключенных к прибору потребителей выше допустимой.

    Установка стабилизатора напряжения в цокольном этаже

    Рассмотрим практический пример подключения стабилизатора к однофазной сети 220 вольт на примере релейного прибора РЕСАНТА АСН-10000/1-Ц. Прибор установлен в цокольном этаже, где никому не мешает щелканье реле и шум расположенного рядом встроенного пылесоса. В стене находится монтажная коробка с клеммником и автоматом для подключения стабилизатора.

    Полочка для установки стабилизатора напряжения

    Агрегат размещен на полочке, которая устроена на забитых в стену отрезках арматуры. Зазор между стеной и полкой, а также свободное пространство под ней обеспечивают обдув воздухом корпуса прибора.

    На входе в дом установлен автомат номиналом 40А, что соответствует максимальной мощности энергопотребления порядка 8 кВт. Стабилизатор РЕСАНТА АСН-10000/1-Ц несколько мощнее, однако для уменьшения нагрузки на прибор через него подключены не все потребители. В результате получилась следующая ниже схема электромонтажа.

    Подключение релейного стабилизатора РЕСАНТА

    В данном случае для защиты от утечек установлено УЗО (устройство защитного отключения) после счетчика. Ряд потребителей, например: освещение, обогреватель сауны, проточный водонагреватель и некоторые розетки имеют нестабилизированное питание.

    Так как стабилизатор РЕСАНТА размещен в цокольном этаже и далеко от ввода в дом, перед ним установлен дополнительный автомат и колодка для электромонтажа. Это позволяет обслуживать и ремонтировать при необходимости прибор без отключения нестабилизированного питания в доме.

    Монтаж выполнен кабелем, который состоит из пяти многожильных проводов. Это позволяет свободно передвигать прибор.

    В соответствии со схемой в коробке установлена клеммная колодка на 4 контакта, пятый провод подключен к автомату. Надо пояснить, что в дополнение к указанному на схеме, к клеммнику подсоединен кабель питания розетки встроенного пылесоса (заходит в коробку снизу). Справа сверху подведены кабель, подающий питание на стабилизатор, а также кабель, подключенный к нагрузке. В данном случае:

    • зеленый провод – заземление;
    • синий – ноль;
    • белый(коричневый) –фаза.

    Подключение кабеля к колодке в распредкоробке

    Подключение стабилизатора в сети 380в

    По своей сути, подключение трехфазного стабилизатора на 380В ничем не отличается от подключения обычного однофазного. Заметим, что приобрести три однофазных стабилизатора выгоднее, чем один трехфазный. Так же и в случае ремонта одного из стабилизаторов: без электроснабжения окажется только одна фаза. Ниже приводится схема монтажа трех стабилизаторов 220В вольт в трехфазной сети при установке автоматического выключателя после счетчика.

    В том случае, когда на клеммной колодке стабилизатора есть только один контакт N для нулевого провода, он будет общим для входа и выхода. Ниже приводится схема монтажа приборов в сети 380В для такого варианта.

    Подключение стабилизаторов с колодками на четыре контакта

    Так бывает, что после изучения инструкции вопросы все же остаются. Пусть в этом случае Вам поможет видеоролик.

    Поздравляем всех, кто не стал терпеть некачественное электроснабжение и приобрел стабилизатор напряжения. Это заметно выгоднее, чем ремонтировать вышедшую из строя бытовую технику по причине отвратительного питания. Если же «загубить» газовый котел или холодильник, можно пострадать и посильнее. Еще приятнее избежать возгорания электроники и пожара.

    Перед тем, как начать монтаж

    Перед тем, как заниматься установкой стабилизатора напряжения, следует убедиться в его способности обеспечить питанием весь дом. Проще всего проконтролировать номинал автоматического выключателя, установленного на входе схемы электроснабжения. В соответствии с нижеследующей таблицей можно определить максимальную мощность, которую ограничивает входной автомат.

    Номинальная мощность стабилизатора должны быть больше, причем с запасом. Изучая паспорт на приобретенный прибор, Вы обнаружите, что указанная для прибора величина падает до 75% при уменьшении напряжения в сети до 150-170В, в зависимости от модели.

    Если мощности стабилизатора недостаточно для питания всей техники в доме, будет правильно подключить к нему лишь часть потребителей энергии. Стабилизированное питание может быть подано только самым важным потребителям, о чем рассказано в статье «Стабилизатор для газового котла с защитой от скачков напряжения 220В, как выбрать», а также «Как выбрать стабилизатор для защиты холодильника от перепадов и скачков напряжения 220В».

    В любом случае следует внимательно ознакомиться с паспортом на изделие. Если прибор был доставлен к месту установки стабилизатора в частном доме или на даче при отрицательной температуре, его следует выдержать 2-3 часа в теплом помещении для просушки конденсата.

    Выбор места для установки прибора

    Установка стабилизатора напряжения может оказаться не самой простой задачей, так как необходимо выполнить несколько требований. Перечислим их в порядке важности, вдобавок к указанным в паспорте на оборудование:

    • исключается попадание влаги на поверхность аппарата;
    • необходимо обеспечить свободный обдув воздухом корпуса прибора;
    • выгодно расположить стабилизатор поближе к вводному щиту;
    • следует учесть, что работа электромеханического прибора сопровождается характерным шумом, а релейный аппарат издает щелчки;
    • должен быть обеспечен удобный доступ для подключения, контроля и обслуживания прибора;
    • оптимально разместить регулятор напряжения на стене или на полке.

    Пример подключения однофазного стабилизатора напряжения

    Подключение стабилизатора 220 вольт в простейшем случае может быть выполнено по одной из приведенных схем, в зависимости от того, в какой последовательности уже соединены счетчик и входной автомат. В любом случае необходимо обеспечить заземление стабилизатора. Суть подключения стабилизатора состоит в том, что напряжение из сети подается на вход стабилизатора, а к его выходу подсоединяются потребители электроэнергии.

    Варианты монтажа стабилизаторов напряжения

    На схемах подключения приведен вариант клеммной колодки на задней стенке стабилизатора напряжения с пятью контактами. Бывает, что клемма заземления размещается отдельно: к ней и нужно подсоединить заземляющий проводник. Иногда клемма N(ноль) всего одна, тогда оба нулевых провода: и входной, и для потребителей подсоединяют к ней.

    Перед непосредственным подключением стабилизатора необходимо обесточить электрическую сеть в помещении с помощью входного автомата. Затем следует убедиться, что оно действительно отсутствует с помощью индикатора или мультиметра. Включатель питания и переключатель байпас прибора должны находиться в выключенном состоянии.

    После выполнения электромонтажа подают питание на стабилизатор, а затем включают и его. Внутренний таймер прибора задерживает его запуск, раздается щелчок, и подается питание. На дисплее высвечивается значение выходного напряжения 220В. У большинства современных приборов на дисплее может появиться следующая информация:

    • символ L означает, что напряжение на входе опустилось ниже допустимого для работы прибора;
    • символ Н означает, что напряжение на входе поднялось выше допустимого для работы прибора;
    • символ СН означает, что суммарная мощность подключенных к прибору потребителей выше допустимой.

    Установка стабилизатора напряжения в цокольном этаже

    Рассмотрим практический пример подключения стабилизатора к однофазной сети 220 вольт на примере релейного прибора РЕСАНТА АСН-10000/1-Ц. Прибор установлен в цокольном этаже, где никому не мешает щелканье реле и шум расположенного рядом встроенного пылесоса. В стене находится монтажная коробка с клеммником и автоматом для подключения стабилизатора.

    Полочка для установки стабилизатора напряжения

    Агрегат размещен на полочке, которая устроена на забитых в стену отрезках арматуры. Зазор между стеной и полкой, а также свободное пространство под ней обеспечивают обдув воздухом корпуса прибора.

    На входе в дом установлен автомат номиналом 40А, что соответствует максимальной мощности энергопотребления порядка 8 кВт. Стабилизатор РЕСАНТА АСН-10000/1-Ц несколько мощнее, однако для уменьшения нагрузки на прибор через него подключены не все потребители. В результате получилась следующая ниже схема электромонтажа.

    Подключение релейного стабилизатора РЕСАНТА

    В данном случае для защиты от утечек установлено УЗО (устройство защитного отключения) после счетчика. Ряд потребителей, например: освещение, обогреватель сауны, проточный водонагреватель и некоторые розетки имеют нестабилизированное питание.

    Так как стабилизатор РЕСАНТА размещен в цокольном этаже и далеко от ввода в дом, перед ним установлен дополнительный автомат и колодка для электромонтажа. Это позволяет обслуживать и ремонтировать при необходимости прибор без отключения нестабилизированного питания в доме.

    Монтаж выполнен кабелем, который состоит из пяти многожильных проводов. Это позволяет свободно передвигать прибор.

    В соответствии со схемой в коробке установлена клеммная колодка на 4 контакта, пятый провод подключен к автомату. Надо пояснить, что в дополнение к указанному на схеме, к клеммнику подсоединен кабель питания розетки встроенного пылесоса (заходит в коробку снизу). Справа сверху подведены кабель, подающий питание на стабилизатор, а также кабель, подключенный к нагрузке. В данном случае:

    • зеленый провод – заземление;
    • синий – ноль;
    • белый(коричневый) –фаза.

    Подключение кабеля к колодке в распредкоробке

    Подключение стабилизатора в сети 380в

    По своей сути, подключение трехфазного стабилизатора на 380В ничем не отличается от подключения обычного однофазного. Заметим, что приобрести три однофазных стабилизатора выгоднее, чем один трехфазный. Так же и в случае ремонта одного из стабилизаторов: без электроснабжения окажется только одна фаза. Ниже приводится схема монтажа трех стабилизаторов 220В вольт в трехфазной сети при установке автоматического выключателя после счетчика.

    В том случае, когда на клеммной колодке стабилизатора есть только один контакт N для нулевого провода, он будет общим для входа и выхода. Ниже приводится схема монтажа приборов в сети 380В для такого варианта.

    Подключение стабилизаторов с колодками на четыре контакта

    Так бывает, что после изучения инструкции вопросы все же остаются. Пусть в этом случае Вам поможет видеоролик.

    Стабилизаторы напряжения приобретают не от хорошей жизни, и раз вы это сделали, то у вас, скорее всего уже есть или были проблемы с напряжением.

    Стандартный уровень напряжения согласно норм, должен быть 230 вольт (не 220, как многие до сих пор считают).

    Когда приобретается маленький аппарат для защиты одного конкретного прибора – компьютер, холодильник, телевизор, котел, то с подключением проблем не возникает.

    На стабилизаторе имеется вилка и розетка. Тут разберется даже школьник.

    А вот если вы хотите установить мощный аппарат, для защиты электроприборов всего дома одновременно, тогда придется повозиться со схемой подключения.

    Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:

      трехжильный кабель ВВГнГ-Ls

    Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.

      выключатель трехпозиционный

    Данный выключатель в отличие от простых, имеет три состояния:

    1 включен потребитель №1

    3 включен потребитель №2

    Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.

    Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.

    С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.

      провод ПУГВ разных цветов

    Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.

    Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.

    Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.

    Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.

    Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п. Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока.

    А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.

    Первым делом монтируете в электрощитке, сразу после вводного автомата трехпозиционный переключатель.

      в первом положении, когда язычок поднят вверх, напряжение будет подаваться в дом напрямую с электросети, без задействования стабилизатора

    Вдруг он у вас вышел из строя или нужно провести какие либо ревизионные работы. Не будете же каждый раз откидывать провода и обесточивать всю квартиру.

      во втором положении II (язычок автомата смотрит вниз) – эл.снабжение будет идти через стабилизатор
      положение «0» – все электроприборы отключены, как от стабилизатора, так и от внешней сети

    Выбираете место установки стабилизатора напряжения. Ставить где попало его тоже нельзя. Существуют определенные правила, которых следует придерживаться.

    Прокладываете от щитка до этого места два кабеля ВВГнГ-Ls.

    Каждый из них желательно промаркировать и сделать соответствующие надписи с обоих концов:

      вход на стабилизатор
      выход из стабилизатора

    Снимаете изоляцию с жил и сначала подключаете кабель в электрощитке. Фазу с того провода, что идет на вход стабилизатора, подсоединяете к выходным зажимам вводного автомата.

    Далее разбираетесь с кабелем стабилизатор-выход. Фазную жилу (пусть это будет белый провод), подключаете к контакту №2 на трехпозиционном выключателе.

    Ноль и землю с обоих кабелей сажаете на соответствующие шинки.

    Теперь нужно подать фазу непосредственно с вводного автомата на трехпозиционный. Зачищаете монтажный провод ПУГВ, оконцовываете жилы наконечниками НШВИ и заводите его с фазного выхода вводного автомата на зажим №4 выключателя.

    Все что остается сделать в щитке – запитать все автоматы с клеммы №1 трехпозиционника.

    Проделываете эту операцию опять же гибкими монтажными проводами.

    Таким образом по схеме вы подали фазу с вводного автомата на 3-х позиционный, а уже далее через его контакты распределили нагрузку, путем подключения через стабилизатор (контакт №2-№1) и напрямую без него (контакт №4-№1).

    В вашем конкретном случае данные номера контактов могут не совпадать с указанными здесь цифрами! Обязательно уточняйте все в инструкции или в паспорте на автомат.

    Теперь переходим к непосредственному подключению самого стабилизатора. Для того, чтобы подобраться к его контактам, может понадобиться снять внешнюю крышку.

    Пропускаете два кабеля (вход и выход) через отверстия и зажимаете под клеммы по следующей схеме:

      фазную жилу входного кабеля стабилизатора затягиваете на клемме ВХОД (Lin)
      нулевую жилу (синего цвета) к клемме N (Nin)
      заземляющую жилу к винтовому зажиму с обозначением ”земля”

    Кстати, отдельной клеммы ”земля” может и не быть. Тогда данную жилу закручиваете под винт на самом корпусе аппарата.

    Есть модели с клеммниками всего под 3 провода. В них назад возвращается только фаза.

    Ноль на питание электроприборов берется с общего щитка.

    Теперь когда вы подали напряжение от щитка до стабилизатора, вам нужно вернуть это напряжение, но уже стабилизированное обратно в общий щит.

    Для этого подсоединяете кабель – выход со стабилизатора.

      его фазную жилу к зажиму ВЫХОД (Lout)
      нулевую к N (Nout)
      жилу заземления, туда же где и заземляющая жила от входного кабеля

    Еще раз визуально проверяете всю схему и закрываете крышку.

    Первое включение нужно осуществлять без нагрузки. То есть все автоматы кроме вводного и того, что идет на стабилизатор должны быть отключены.

    Запускаете его на холостой ход и контролируете работу. Входные и выходные параметры, нет ли посторонних шумов или писка.

    Также не помешает проверить правильность и точность тех.данных, что высвечиваются на электронном табло.

    Если у вас дома трехфазная сеть 380В, то для такого подключения рекомендуется использовать 3 однофазных стабилизатор напряжения, с подключением каждого по отдельной фазе.

    Более подробно о преимуществах трехфазных и однофазных аппаратов и когда какой нужно выбирать, можно ознакомиться в статье ”Как выбрать стабилизатор напряжения для дома”.

    У вас может быть все идеально подключено и соблюдена схема, но стабилизатор будет постоянно греться и отключаться, либо на его табло выскакивать ошибки.

    О том, где можно, а где ни в коем случае нельзя располагать данный прибор подробно читайте в статье ”Где устанавливать стабилизатор напряжения в доме”.

    2 Подключение через простой автомат, а не трехпозиционный

    Безусловно, данный пункт и ошибкой то трудно назвать. Тем более 90% потребителей именно так и делают.

    Сначала вы отключаете автоматы на панели стабика.

    Потом сам переключатель переводите в положение ТРАНЗИТ или БАЙПАС.

    И только затем снова включаете автоматы.

    Многие забывают об этом и делают переключение под нагрузкой. Что в итоге приводит к поломкам.

    С 3-х позиционным автоматом такое исключено. Вы автоматически переключаете напряжение, без каких либо манипуляций на стабилизаторе. И все это одной клавишей!

    Никакой последовательности запоминать не нужно. Так что данную процедуру можно смело доверять любому члену семьи.

    3 Использование для подключения кабеля меньшего сечения чем вводной

    Вы можете выбирать меньшее сечение, только когда запитываете отдельные электроприемники.

    Если же у вас на стабилизаторе сидит весь дом, то будьте добры соблюдать параметры по вводу согласно всей общедомовой нагрузке.

    4 Отсутствие наконечников на многожильных проводах

    Почему-то многие забывают, что зачастую через стабилизатор проходит вся нагрузка вашего дома. Ровно такая же как и на вводом автомате.

    При этом в электрощите все провода обжаты, даже на выключателях освещения с минимальными токами, а вот на клеммниках стабилизатора или его автоматах, постоянно можно встретить голый провод просто поджатый винтом.

    Поэтому не скупитесь, и заранее вместе с аппаратом приобретайте соответствующие наконечники.

    5 Выбивает общий автомат в щитке

    Иногда после подключения стабилизатора, начинает выбивать вводной автомат. При этом без стабилизатора, все нормально и ничего не отключается.

    Многие сразу грешат на неправильную схему подключения или дефект аппарата. Везут его на гарантийный ремонт и т.п.

    А причина может быть совсем в другом. Если у вас через чур низкое напряжение 150-160В, то при его повышении до стандартных 220-230В, ток в сети значительно вырастет.

    Отсюда и все проблемы. Обращайте на это внимание, прежде чем нести его обратно в магазин.

    Как подключить стабилизатор напряжения однофазный

    Если Вы имеете минимальный багаж знаний на тему электричества, то подключение стабилизатора напряжения не займет много времени. Пошаговая инструкция по монтажу и установке даст все необходимые знания.

    В статье даются рекомендации как подключить стабилизатор напряжения своими руками бесплатно, не прибегая к помощи профессионального электрика. Магистральный тип стабилизатора – это устройство, монтируемое непосредственно в элекромагистраль с помощью клеммной коробки, между потребителями электроэнергии и бытовой электрической сетью.

    Клеммный стабилизатор подключается и используется для питания СРАЗУ целого дома (офиса, коттеджа, дома, квартиры, дачи), чтобы защитить сразу ВСЕ бытовые электроприборы от неполадок в сети.

    Стабилизатор считается обычным бытовым прибором, установленным на абонентскую линию, поэтому подключаем, обязательно, после электросчетчика. Установка и подключение стабилизатора напряжения любого типа, в доме или квартире, не нуждается в специальных разрешительных документах и согласованиях.

    Процедура подключения стабилизатора не слишком сложная, однако требует определенных навыков и знаний, а также инструмент и расходники: крепежи, кабельный короб, кабель нужного сечения и клеммники, перфоратор, устройство для индикации напряжения в электролинии и т.д.


    Отдельно, особое внимание, надо уделить грамотному выбору сечения кабеля для подключения стабилизатора напряжения большой мощности. Обязательно учитывайте, что сила тока при низком напряжении в сети на входе стабилизатора значительно ВЫШЕ. Выбирайте кабель соответствующих параметров! Чем ниже показатель напряжения электрической линии на входе прибора, тем выше будет показатель силы тока, соответственно сечение нужно выбирать с запасом.

    В паспорте к любому стабилизатору, при подключении, указано рекомендованное сечение для конкретной мощности прибора. Грубо говоря, чем больше мощность, тем сечение провода больше. Подключение мощных стабилизаторов напряжения осуществляется только витой парой, потому что площадь соприкосновения контактов значительно больше.

    НЕ ПОДКЛЮЧАЙТЕ стабилизатор кабелем «монолит»! Площадь контакта очень МАЛЕНЬКАЯ, поэтому стабилизатор может некорректно работать и снять полную мощность не получится.

    Используйте переходник на витую пару.

    После покупки защитного прибора для своих устройств встает вопрос, как правильно подключить стабилизатор напряжения и можно ли это сделать без помощи профессионала. Схема подключения стабилизатора напряжения клеммного типа не очень сложная. От вас потребуется соблюдение некоторых правил.

    Подключение однофазного стабилизатора напряжения заключается в правильной коммутации проводов фазы и ноля на клеммных колодках прибора.

    Перед началом работы нужно отключить подачу напряжения электрической сети на входе в дом (офис, коттедж) – для этого требуется отключить вводной автомат. При помощи индикатора напряжения электрической сети, обязательно удостоверьтесь в отсутствии тока в сети квартиры (офиса, коттеджа). При проведении подобных работ – безопасность является самым важным аспектом.

    Начнем.


    Откройте клеммную коробку стабилизатора напряжения, получите возможность доступа к монтажным винтам.

    Вдев кабель сквозь резиновые манжеты клеммной колодки, прочно закрепите ВИТОЙ кабель винтами. Для подключения стабилизатора напряжения необходимо подсоединить провода по определенной схеме. Схема прилагается к каждому стабилизатору напряжения.
    Если у Вас провод «монолит» сделайте переходник на витую пару. Соединив провода по схеме, Вы получите стабилизированное напряжение на выходе стабилизатора.
    Плотно зажмите винты — запомните, что КАЧЕСТВЕННЫЙ контакт на клеммнике имеет самое важное значение. Перепроверьте контакт через неделю пользования прибором. Качественный контакт достигается только ВИТОЙ ПАРОЙ.

    Слабый, плохой контакт или маленькая площадь соприкосновения (провод «монолит») не позволят Вам снять полную мощность с прибора или вызовут некорректную его работу.

    В последствии рекомендуем проверять и подтягивать винты подключения кабеля хотя-бы один раз в год, для обеспечения прочного контакта.


    Подключив провода, закройте клеммную коробку.
    Нужно включить вводной автомат квартиры (дачи, офиса, коттеджа).
    Переключите автоматический выключатель СЕТЬ в положение ВКЛ. Стабилизатор запустится в работу.

    Установка и подключение стабилизатора напряжения завершены, если не учитывать подключающие провода от электрического счетчика, установку защитных коробов.

    Схема подключения стабилизатора в частном доме

    Для подключение стабилизатора в частном доме отлично подходит простая, унверсальная схема, где используется провод витая пара, зажимы и мультиметр. Дачники обычно спрашивают про отличия подключения в сельской местности, так вот подключение стабилизатора напряжения для дачи происходит по такой же схеме, но стоит добавить блок УМЗ, либо приобрести стаблизатор с таймером ожидания.

    Нельзя устанавливать стабилизаторы напряжения в закрытые ниши, так как эти приборы нуждаются в максимальном доступе воздуха для быстрого, естественного охлаждения.

    Категорически запрещается устанавливать и подключать стабилизатор напряжения в помещениях, где хранятся быстро воспламеняющиеся жидкости и материалы.

    Всем удачи!

    Как правильно подключить стабилизатор 🔌 напряжения однофазный, установка и схема подключения в частном доме и на даче

    Поздравляем всех, кто не стал терпеть некачественное электроснабжение и приобрел стабилизатор напряжения. Это заметно выгоднее, чем ремонтировать вышедшую из строя бытовую технику по причине отвратительного питания. Если же «загубить» газовый котел или холодильник, можно пострадать и посильнее. Еще приятнее избежать возгорания электроники и пожара.

    Изучаем стабилизатор со всех сторон

    Перед тем, как начать монтаж

    Перед тем, как заниматься установкой стабилизатора напряжения, следует убедиться в его способности обеспечить питанием весь дом. Проще всего проконтролировать номинал автоматического выключателя, установленного на входе схемы электроснабжения. В соответствии с нижеследующей таблицей можно определить максимальную мощность, которую ограничивает входной автомат.

    Номинальная мощность стабилизатора должны быть больше, причем с запасом. Изучая паспорт на приобретенный прибор, Вы обнаружите, что указанная для прибора величина падает до 75% при уменьшении напряжения в сети до 150-170В, в зависимости от модели.

    Если мощности стабилизатора недостаточно для питания всей техники в доме, будет правильно подключить к нему лишь часть потребителей энергии. Стабилизированное питание может быть подано только самым важным потребителям, о чем рассказано в статье «Стабилизатор для газового котла с защитой от скачков напряжения 220В, как выбрать», а также «Как выбрать стабилизатор для защиты холодильника от перепадов и скачков напряжения 220В».

    В любом случае следует внимательно ознакомиться с паспортом на изделие. Если прибор был доставлен к месту установки стабилизатора в частном доме или на даче при отрицательной температуре, его следует выдержать 2-3 часа в теплом помещении для просушки конденсата.

    Выбор места для установки прибора

    Установка стабилизатора напряжения может оказаться не самой простой задачей, так как необходимо выполнить несколько требований. Перечислим их в порядке важности, вдобавок к указанным в паспорте на оборудование:

    • исключается попадание влаги на поверхность аппарата;
    • необходимо обеспечить свободный обдув воздухом корпуса прибора;
    • выгодно расположить стабилизатор поближе к вводному щиту;
    • следует учесть, что работа электромеханического прибора сопровождается характерным шумом, а релейный аппарат издает щелчки;
    • должен быть обеспечен удобный доступ для подключения, контроля и обслуживания прибора;
    • оптимально разместить регулятор напряжения на стене или на полке.

    Пример подключения однофазного стабилизатора напряжения

    Подключение стабилизатора 220 вольт в простейшем случае может быть выполнено по одной из приведенных схем, в зависимости от того, в какой последовательности уже соединены счетчик и входной автомат. В любом случае необходимо обеспечить заземление стабилизатора. Суть подключения стабилизатора состоит в том, что напряжение из сети подается на вход стабилизатора, а к его выходу подсоединяются потребители электроэнергии.

    Варианты монтажа стабилизаторов напряжения

    На схемах подключения приведен вариант клеммной колодки на задней стенке стабилизатора напряжения с пятью контактами. Бывает, что клемма заземления размещается отдельно: к ней и нужно подсоединить заземляющий проводник. Иногда клемма N(ноль) всего одна, тогда оба нулевых провода: и входной, и для потребителей подсоединяют к ней.

    Монтаж линий питания следует вести проводом, сечение которого не меньше, чем в существующей электропроводке.

    Перед непосредственным подключением стабилизатора необходимо обесточить электрическую сеть в помещении с помощью входного автомата. Затем следует убедиться, что оно действительно отсутствует с помощью индикатора или мультиметра. Включатель питания и переключатель байпас прибора должны находиться в выключенном состоянии.

    После выполнения электромонтажа подают питание на стабилизатор, а затем включают и его. Внутренний таймер прибора задерживает его запуск, раздается щелчок, и подается питание. На дисплее высвечивается значение выходного напряжения 220В. У большинства современных приборов на дисплее может появиться следующая информация:

    • символ L означает, что напряжение на входе опустилось ниже допустимого для работы прибора;
    • символ Н означает, что напряжение на входе поднялось выше допустимого для работы прибора;
    • символ СН означает, что суммарная мощность подключенных к прибору потребителей выше допустимой.
    Установка стабилизатора напряжения в цокольном этаже

    Рассмотрим практический пример подключения стабилизатора к однофазной сети 220 вольт на примере релейного прибора РЕСАНТА АСН-10000/1-Ц. Прибор установлен в цокольном этаже, где никому не мешает щелканье реле и шум расположенного рядом встроенного пылесоса. В стене находится монтажная коробка с клеммником и автоматом для подключения стабилизатора.

    Полочка для установки стабилизатора напряжения

    Агрегат размещен на полочке, которая устроена на забитых в стену отрезках арматуры. Зазор между стеной и полкой, а также свободное пространство под ней обеспечивают обдув воздухом корпуса прибора.

    На входе в дом установлен автомат номиналом 40А, что соответствует максимальной мощности энергопотребления порядка 8 кВт. Стабилизатор РЕСАНТА АСН-10000/1-Ц несколько мощнее, однако для уменьшения нагрузки на прибор через него подключены не все потребители. В результате получилась следующая ниже схема электромонтажа.

    Подключение релейного стабилизатора РЕСАНТА

    В данном случае для защиты от утечек установлено УЗО (устройство защитного отключения) после счетчика. Ряд потребителей, например: освещение, обогреватель сауны, проточный водонагреватель и некоторые розетки имеют нестабилизированное питание.

    Так как стабилизатор РЕСАНТА размещен в цокольном этаже и далеко от ввода в дом, перед ним установлен дополнительный автомат и колодка для электромонтажа. Это позволяет обслуживать и ремонтировать при необходимости прибор без отключения нестабилизированного питания в доме.

    Колодка на задней стенке стабилизатора РЕСАНТА

    Монтаж выполнен кабелем, который состоит из пяти многожильных проводов. Это позволяет свободно передвигать прибор.

    В соответствии со схемой в коробке установлена клеммная колодка на 4 контакта, пятый провод подключен к автомату. Надо пояснить, что в дополнение к указанному на схеме, к клеммнику подсоединен кабель питания розетки встроенного пылесоса (заходит в коробку снизу). Справа сверху подведены кабель, подающий питание на стабилизатор, а также кабель, подключенный к нагрузке. В данном случае:

    • зеленый провод – заземление;
    • синий – ноль;
    • белый(коричневый) –фаза.
    Подключение кабеля к колодке в распредкоробке

    Подключение стабилизатора в сети 380в

    По своей сути, подключение трехфазного стабилизатора на 380В ничем не отличается от подключения обычного однофазного. Заметим, что приобрести три однофазных стабилизатора выгоднее, чем один трехфазный. Так же и в случае ремонта одного из стабилизаторов: без электроснабжения окажется только одна фаза. Ниже приводится схема монтажа трех стабилизаторов 220В вольт в трехфазной сети при установке автоматического выключателя после счетчика.

    Монтаж трех стабилизаторов с колодками на пять контактов

    В том случае, когда на клеммной колодке стабилизатора есть только один контакт N для нулевого провода, он будет общим для входа и выхода. Ниже приводится схема монтажа приборов в сети 380В для такого варианта.

    Подключение стабилизаторов с колодками на четыре контакта

    Так бывает, что после изучения инструкции вопросы все же остаются. Пусть в этом случае Вам поможет видеоролик.

    Как сделать автоматический стабилизатор напряжения? Схема, объяснение конструкции

    Введение

    На рынке доступно огромное количество разнообразных стабилизаторов напряжения, и, конечно же, не составляет большого труда приобрести один в соответствии с потребностями. Но, конечно, может быть очень забавно построить один дома самостоятельно и увидеть, как он действительно работает. Схема автоматического стабилизатора напряжения (АВС), описанная в этой статье, на самом деле очень проста по конструкции, достаточно точна и обеспечит хорошую защиту подключенного к ней электронного устройства.Это особенно защитит их от опасных высоких напряжений, а также от возможных отключений (низкого напряжения). Выходной сигнал будет находиться в диапазоне 200–255 В переменного тока при входном напряжении 175–280 В переменного тока.

    Как работает стабилизатор напряжения?

    В одной из моих предыдущих статей вы, должно быть, узнали о работе автотрансформатора. Там мы изучили, как автотрансформатор можно использовать для создания напряжений выше и ниже, чем напряжение переменного тока входной сети.Автотрансформатор фактически играет самую важную роль в цепи стабилизатора напряжения.

    Схема стабилизатора напряжения в основном состоит из датчика напряжения. Он настроен на обнаружение повышения или понижения напряжения сети переменного тока до опасного уровня. Как только он обнаруживает опасное входное напряжение, он немедленно включает реле, подключенные к нему. Эти реле, в свою очередь, меняют местами и переключают соответствующие клеммы обмотки автотрансформатора для корректировки и стабилизации выходного напряжения.Таким образом, устройство, подключенное к выходу схемы стабилизатора напряжения, всегда получает безопасное, допустимое напряжение и может надежно работать независимо от колеблющихся входных напряжений.

    Давайте перейдем к изучению деталей, необходимых для его постройки, а также деталей его конструкции.

    Требуемые детали

    Для схемы потребуются следующие детали:

    • Резистор Вт, CFR R1 = 2 K 7,

    • Предустановка P1 = 10 K Линейная,

    • Транзистор T1 = BC 547,

    • Стабилитрон Z1 = 3 В / 400 мВт,

    • Диод D1, D2 = 1N4007,

    • Конденсатор = 220 мкФ / 25 В

    • Реле RL1 = 12 В / DPDT mini ( двойной полюс, двойной ход),

    • Трансформатор T1 = 12 — 0 — 12 В / 5 ампер.T2 = 0 — 12 В / 500 мА (вход в соответствии со спецификациями страны)

    • Плата общего назначения = 3 дюйма на 3 дюйма

    Строительные подсказки

    С помощью данной принципиальной схемы (на следующей странице ) Построение этой простой схемы AVS может быть выполнено с помощью следующих простых шагов:

    • В данную часть платы общего назначения вставьте транзистор, припаяйте и отрежьте его выводы.

    • Закрепите и припаяйте остальные связанные детали вместе с реле вокруг транзистора.

    • Свяжите их все согласно принципиальной схеме.

    • Наконец, подключите первичный и вторичный провода трансформатора к контактам реле, как показано на схеме.

    На следующей странице описаны схема и детали конструкции этой схемы автоматического стабилизатора напряжения.

    Описание схемы

    Функционирование этой простой схемы стабилизатора напряжения можно понять по следующим пунктам:

    Обращаясь к рисунку ( Нажмите, чтобы увеличить ), мы видим, что транзистор T1 является основной активной частью всего схема.

    Напряжение от меньшего трансформатора выпрямляется посредством D1 и фильтруется через C1 для выработки требуемой рабочей мощности для схемы управления, состоящей из транзистора T1, предварительно установленного P1, стабилитрона Z1 и реле DPDT.

    Вышеупомянутое напряжение также используется как базовое опорное или чувствительное напряжение. Поскольку это напряжение будет изменяться пропорционально изменениям приложенного входного напряжения.

    Например, если обычно рабочее напряжение постоянного тока составляет около 12 вольт, увеличение или уменьшение входного напряжения сети переменного тока, скажем, на 25 вольт будет пропорционально увеличивать или уменьшать напряжение постоянного тока до 14 или 10 вольт соответственно.

    Предварительная установка P1 настроена таким образом, что транзистор проводит и управляет реле всякий раз, когда входная сеть переменного тока имеет тенденцию отклоняться выше точного нормального напряжения (110 или 225 вольт) и наоборот.

    Если входное напряжение превышает вышеуказанный предел, T1 проводит и активирует реле. Контакты реле подключают соответствующие соединения трансформатора стабилизатора мощности, чтобы вычесть 25 вольт на входе, то есть довести выходное напряжение примерно до 205 вольт. С этого момента, если сетевое напряжение продолжает увеличиваться, выходное напряжение для приборов будет на 25 вольт ниже него.Это означает, что даже если напряжение достигает 260 В, выходная мощность будет только до 260 — 25 = 235 вольт.

    Совершенно противоположное произойдет, если входной переменный ток упадет ниже нормального уровня, т.е. в этом случае к выходу будет добавлено 25 вольт, и даже если вход продолжит падать и достигнет 180 вольт, выход достигнет только до 180 + 25 = 205 вольт.

    Настоящая конструкция очень проста и проста, поэтому стабилизация не может быть очень точной. Но, безусловно, он будет поддерживать выходное напряжение в пределах 200 и 250 вольт против предельных входных напряжений от 180 до 275 вольт (или в пределах 100 и 125 против 90 и 130 вольт).

    Как это проверить?

    Готовая монтажная плата простого стабилизатора напряжения может быть протестирована следующим образом:

    • Для процедуры тестирования вам потребуется универсальный регулируемый источник питания постоянного тока 0–12 вольт.

    • Можно предположить, что максимальное напряжение источника питания 12 В соответствует входному напряжению приблизительно 230 В переменного тока. Это напряжение примем за напряжение срабатывания или за напряжение переключения стабилизатора.

    • Подключите источник питания к клеммам питания собранной печатной платы.

    • Поддерживайте максимальное напряжение источника питания 12 вольт.

    • Тщательно отрегулируйте предустановку, чтобы реле просто сработало.

    • Теперь при уменьшении напряжения питания на 1 вольт, т.е. до 11 вольт, реле должно вернуться в деактивированное положение.

    • На этом настройка устройства завершена. Он должен поддерживать выходное напряжение в диапазоне от 200 до 255 вольт с предельным входным напряжением от 175 до 280 вольт.

    Теперь ваш стабилизатор напряжения готов и должен защищать все бытовые электронные устройства, подключенные к его выходу.

    Основы электроники: регулятор напряжения

    Создание регулятора напряжения

    Теория предыстории: как работает регулятор напряжения?


    Название говорит само за себя: регулятор напряжения. Аккумулятор в вашем автомобиле, который заряжается от генератора переменного тока, розетка в вашем доме, которая обеспечивает все необходимое вам электричество, сотовый телефон , который вы, вероятно, будете держать под рукой каждую минуту дня, им всем требуется определенное напряжение, чтобы функция.Колеблющиеся выходы, выходящие за пределы ± 2 В, могут вызвать неэффективную работу и, возможно, даже повредить ваши зарядные устройства. Существует множество причин, по которым могут возникать колебания напряжения: состояние электросети, включение и выключение других устройств, время суток, факторы окружающей среды и т. Д. Из-за необходимости постоянного постоянного напряжения введите регулятор напряжения.

    Стабилизатор напряжения — это интегральная схема (ИС), которая обеспечивает постоянное фиксированное выходное напряжение независимо от изменения нагрузки или входного напряжения.Это можно сделать разными способами, в зависимости от топологии схемы внутри, но для того, чтобы этот проект оставался базовым, мы в основном сосредоточимся на линейном регуляторе. Линейный регулятор напряжения работает, автоматически регулируя сопротивление через контур обратной связи, учитывая изменения как нагрузки, так и входа, при этом сохраняя постоянное выходное напряжение.

    Микросхема стабилизатора напряжения в корпусе ТО-220 С другой стороны, для импульсных регуляторов
    , таких как понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий / понижающий), требуется несколько дополнительных компонентов, а также повышенная сложность как различные компоненты повлияют на результат.Импульсные регуляторы намного более эффективны с точки зрения преобразования энергии, где эффективность играет большую роль, но линейные регуляторы очень хорошо работают в качестве регуляторов напряжения в низковольтных приложениях.

    В зависимости от приложения, стабилизатору напряжения может также потребоваться больше внимания для улучшения других параметров, таких как пульсирующее напряжение на выходе, переходная характеристика нагрузки, падение напряжения и выходной шум. Такие приложения, как аудиопроекты, более чувствительны к шуму и помехам, поэтому потребуется дополнительная фильтрация, особенно в импульсных регуляторах, где пульсации на выходе могут быть значительными.Большую часть информации, включая схемы, можно найти в техническом описании микросхемы стабилизатора напряжения, с которой вы работаете, в разделе «Примечания по применению».


    Указания по применению для регулятора 7805T У
    Afrotechmods также есть информативное видео о работе с популярным регулятором напряжения LM317T для получения регулируемого выхода.


    Проект

    Комплект регулятора напряжения макетной платы — отличный набор для пайки для любого новичка. Он выдает чистое 5 В постоянного тока с максимальным выходным током 500 мА.Он способен принимать входное напряжение в диапазоне 6-18 В постоянного тока и имеет контакты, размер которых идеально подходит для любой стандартной макетной платы с шагом 0,1 дюйма.

    В комплект входят:

    (1) Печатная плата
    (1) Выключатель питания
    (1) Разъем питания постоянного тока 2,1 мм
    (1) Электролитический конденсатор 10 мкФ
    (1) Монолитный конденсатор 0,1 мкФ
    (1) Резистор 1 кОм
    (1) Красный источник питания светодиодный индикатор
    (1) Разъемы контактов
    (1) Руководство пользователя

    Вам понадобится:
    • Паяльник
    • Припой
    • Резаки
    • Блок питания от настенного адаптера 6-18В (Mean Well GS06U-3PIJ)


    Комплект регулятора напряжения макетной платы Solarbotics 34020
    Направление:

    1.Резистор и конденсатор 0,1 мкФ:
    Удалите ленту и согните выводы резистора, затем вставьте его в положение, обозначенное R1. Припаяйте его с другой стороны и отрежьте лишние выводы. Сделайте то же самое для конденсатора 0,1 мкФ в позиции C2. Неважно, каким образом эти детали установлены — они не поляризованы .

    2. Регулятор напряжения и цилиндрический домкрат:
    Припаяйте регулятор напряжения в положение V-REG. Убедитесь, что сторона табуляции выровнена с жирной линией на символе — обратное направление не сработает! Затем обрежьте лишние провода.Защелкните цилиндрический домкрат в положение B1 и припаяйте его на место.

    Шаг 1 Шаг 2
    3. Конденсатор 10 мкФ и индикатор питания:
    Установите электролитический конденсатор 10 мкФ в положение C1. Позиционирование имеет решающее значение. Убедитесь, что более длинный провод входит в площадку, отмеченную (+). Убедитесь, что он находится в правильном положении, проверив, что полоса на стороне конденсатора находится ближе всего к этикетке PWR. Сделайте то же самое со светодиодом; более длинный вывод входит в круглую площадку.Вы можете подтвердить, что светодиод находится в правильном положении, заметив небольшую выемку на светодиоде, расположенную на стороне символа светодиода с линией (рядом с квадратной площадкой).

    4. Контакты выключателя питания и макетной платы:
    Выключатель питания просто устанавливается в положение PWR. С выводами на макетной плате посложнее — они идут снизу, и их сложнее удерживать при пайке. Тщательно припаяйте их как можно ровнее вручную или, если вы уверены, вставьте длинную сторону контактов в макет так, чтобы они совпали с отверстиями в печатной плате, затем припаяйте их, пока макетная плата удерживает все выровненные.

    Шаг 3 Шаг 4
    5. Настройка шин питания:
    ЭТО ВАЖНО.
    Если вы забудете это сделать, ваша доска не будет работать! Выберите, на какой стороне макета вы хотите установить плату (в этом примере мы используем левую сторону). Обратите внимание на полярность направляющих макетной платы «+» внизу и «-» вверху. Найдите, какой набор контактных площадок на плате соответствует этому расположению, и нанесите каплю припоя на маленькие полумесяцы.

    Если вы планируете переключать полярность питания на направляющих, вы можете установить номер детали SWT7 на контактные площадки между контактными площадками. В этом случае не допускайте попадания капель на подушечки. Обратите внимание, что это не рекомендуемая модификация.

    Подайте питание на плату от любого источника постоянного тока диаметром 2,1 мм с номинальным напряжением 6–18 В — не превышайте максимальное значение 35 В постоянного тока! Регулятор мощности нагревается при питании от более 12 В (это нормально). Если вы не хотите использовать его на макетной плате, используйте контактные площадки с маркировкой «+ -» на конце, ближайшем к гнезду цилиндра, для регулируемой выходной мощности 5 В.


    Шаг 5
    SWT7 Навесной

    Вопросы для обсуждения


    1.Какое влияние на выход цепи окажут тепло и шум?
    2. Как конденсаторы помогают отфильтровывать помехи?
    3. Каковы преимущества и недостатки линейных и импульсных регуляторов?

    Управление питанием, Глава 7: ИС регуляторов напряжения

    Практически во всех источниках питания используются полупроводники для обеспечения регулируемого выходного напряжения. Если источник питания имеет вход переменного тока, он выпрямляется до постоянного напряжения. ИС преобразователя мощности принимает входной сигнал постоянного тока и выдает выходной сигнал постоянного тока или управляет полупроводниковыми переключателями на выходе внешней мощности для создания выходного постоянного тока.Это стабилизатор напряжения, когда его выходное напряжение возвращается в цепь, благодаря которой напряжение остается постоянным. Если выходное напряжение имеет тенденцию повышаться или понижаться, обратная связь заставляет выходное значение оставаться прежним.

    Преобразователь мощности может работать как по импульсной, так и по линейной схеме. В линейной конфигурации управляющий транзистор всегда рассеивает мощность, которую можно минимизировать, используя стабилизаторы с малым падением напряжения (LDO), которые регулируют правильно даже при относительно низком перепаде напряжения между их входом и выходом.ИС LDO имеют более простые схемы, чем их собратья с импульсным режимом, и производят меньше шума (без переключения), но ограничены своей способностью выдерживать ток и рассеивать мощность. Некоторые микросхемы LDO рассчитаны на ток около 200 мА, а другие — до 1 А.

    КПД ИС LDO может составлять 40-60%, тогда как ИС в режиме переключения могут показывать КПД до 95%. Топологии с коммутационным режимом являются основным подходом для встроенных систем, но LDO также находят применение в некоторых приложениях.

    Линейный регулятор с малым падением напряжения (LDO)

    Линейные регуляторы

    LDO обычно используются в системах, где требуется малошумящий источник питания вместо импульсного стабилизатора, который может нарушить работу системы.LDO также находят применение в приложениях, где регулятор должен поддерживать регулирование с небольшими различиями между входным напряжением питания и выходным напряжением нагрузки, например, в системах с батарейным питанием. Их низкое падение напряжения и низкий ток покоя делают их подходящими для портативных и беспроводных приложений. LDO со встроенным силовым полевым МОП-транзистором или биполярным транзистором обычно обеспечивают выходные сигналы в диапазоне от 50 до 500 мА.

    Стабилизатор напряжения LDO работает в линейной области с топологией, показанной на рис.7-1. Основными компонентами стабилизатора напряжения являются последовательный транзистор (биполярный транзистор или полевой МОП-транзистор), усилитель дифференциальной ошибки и точный источник опорного напряжения.

    7-1. В базовом LDO один вход усилителя дифференциальной ошибки, установленный резисторами R1 и R2, контролирует процентное значение выходного напряжения. Другой вход усилителя ошибки — это стабильное опорное напряжение (V REF ). Если выходное напряжение увеличивается относительно VREF, усилитель дифференциальной ошибки изменяет выход проходного транзистора для поддержания постоянного выходного напряжения нагрузки (V OUT ).

    Ключевыми рабочими факторами LDO являются его падение напряжения, коэффициент отклонения источника питания (PSRR) и выходной шум. Низкое падение напряжения относится к разнице между входным и выходным напряжениями, которая позволяет ИС регулировать выходное напряжение нагрузки. То есть LDO может регулировать выходное напряжение нагрузки до тех пор, пока его вход и выход не приблизятся друг к другу при падении напряжения. В идеале падение напряжения должно быть как можно более низким, чтобы свести к минимуму рассеивание мощности и максимизировать эффективность.Обычно считается, что падение напряжения достигается, когда выходное напряжение упало до 100 мВ ниже номинального значения. Ток нагрузки и температура проходного транзистора влияют на падение напряжения.

    Внутренний источник опорного напряжения LDO — это потенциальный источник шума, обычно выражаемый в микровольтах RMS в определенной полосе частот, например, 30 мкВ RMS в диапазоне от 1 до 100 кГц. Этот низкий уровень шума вызывает меньше проблем, чем переходные процессы переключения и гармоники импульсного преобразователя. На рис. 7-1 LDO имеет штырек байпаса (опорного напряжения) для фильтрации шума опорного напряжения с конденсатором относительно земли.Добавление входных, выходных и байпасных конденсаторов, указанных в таблице, обычно приводит к беспроблемному уровню шума.

    Среди их эксплуатационных соображений — тип и диапазон приложенного входного напряжения, требуемое выходное напряжение, максимальный ток нагрузки, минимальное падение напряжения, ток покоя, рассеиваемая мощность и ток отключения.

    Управление контуром компенсации частоты LDO для включения нагрузочного конденсатора снижает чувствительность к ESR конденсатора (эквивалентное последовательное сопротивление), что позволяет стабильно использовать LDO с конденсаторами любого типа хорошего качества.Кроме того, выходной конденсатор должен располагаться как можно ближе к выходному.

    Дополнительные функции в некоторых LDO:

    • Вход разрешения, позволяющий внешнее управлять включением и выключением LDO.

    • Плавный пуск, который ограничивает пусковой ток и контролирует время нарастания выходного напряжения при включении питания.

    • Контакт байпаса, который позволяет внешнему конденсатору снижать шум опорного напряжения.

    • Выходной сигнал ошибки, указывающий, выходит ли выход из регулирования.

    • Тепловое отключение, при котором LDO отключается, если его температура превышает заданное значение.

    • Защита от перегрузки по току (OCP), которая ограничивает выходной ток LDO и рассеиваемую мощность.

    LT3042

    LT3042 от Linear Technology — это линейный стабилизатор с малым падением напряжения (LDO), в котором используется уникальная архитектура для минимизации шумовых эффектов и оптимизации подавления пульсаций источника питания (PSRR).

    PSRR описывает, насколько хорошо схема отклоняет пульсации, введенные на ее входе.Пульсации могут быть вызваны либо входным источником питания, например пульсациями питания 50/60 Гц, пульсациями переключения от преобразователя постоянного / постоянного тока, либо пульсациями из-за совместного использования входного питания с другими цепями.

    Для LDO PSRR является функцией регулируемой пульсации выходного напряжения по сравнению с пульсацией входного напряжения в заданном диапазоне частот (обычно от 10 Гц до 1 МГц), выраженной в децибелах (дБ). Это может быть важным фактором, когда LDO питает аналоговые схемы, потому что низкий PSRR может позволить пульсации на выходе повлиять на другие схемы.

    Выходные конденсаторы

    с низким ESR и добавленные конденсаторы обхода опорного напряжения улучшают характеристики PSRR. В аккумуляторных системах должны использоваться LDO, которые поддерживают высокий PSRR при низком напряжении аккумуляторной батареи.

    LT3042, показанный на упрощенной схеме на рис. 7-2, представляет собой LDO, который снижает шум и увеличивает PSRR. Вместо опорного напряжения, используемого в большинстве традиционных линейных регуляторов, LT3042 использует опорный ток, который работает с типичным уровнем шумового тока 20 пА / √Гц (6nARMS в полосе пропускания от 10 Гц до 100 кГц).

    7-2. LT3042 — это LDO-стабилизатор, в котором используется уникальная архитектура для минимизации шумовых эффектов и оптимизации подавления пульсаций источника питания (PSRR).

    Источник тока сопровождается высокопроизводительным буфером напряжения Rail-to-Rail, что позволяет легко подключать его параллельно для дальнейшего снижения шума, увеличения выходного тока и распределения тепла на печатной плате. Параллельное подключение нескольких LT3042 дополнительно снижает уровень шума в √N раз, где N — количество параллельных цепей.

    LT3080

    LT3080 компании

    Linear Technology является уникальным, 1.1A LDO, который можно подключить параллельно для увеличения выходного тока или распределения тепла в платах для поверхностного монтажа (рис. 7-3). Эта ИС выводит коллектор проходного транзистора, чтобы обеспечить работу с малым падением напряжения — до 350 мВ — при использовании с несколькими источниками питания. Функции защиты включают защиту от короткого замыкания и безопасную рабочую зону, а также тепловое отключение.

    7-3. LT3080 может программировать выходное напряжение на любой уровень от нуля до 36 В.

    Ключевой особенностью LT3080 является способность обеспечивать широкий диапазон выходного напряжения.Используя опорный ток через единственный резистор, выходное напряжение программируется на любой уровень от нуля до 36 В. Он стабилен с емкостью на выходе 2,2 мкФ и может использовать небольшие керамические конденсаторы, которые не требуют дополнительного ESR, в отличие от других регуляторов.

    LT3080 особенно хорошо подходит для приложений, требующих нескольких рельсов. Его архитектура регулируется до нуля с помощью одного резистора, который обслуживает современные низковольтные цифровые ИС, а также обеспечивает простую параллельную работу и управление температурой без радиаторов.Регулировка выхода на «ноль» позволяет отключить схему с питанием, а когда вход предварительно отрегулирован — например, входной источник 5 В или 3,3 В — внешние резисторы могут помочь распределить тепло.

    Прецизионный внутренний источник тока «0» TC 10 мкА подключается к неинвертирующему входу его операционного усилителя мощности, который обеспечивает низкоомный буферизованный выход для напряжения на неинвертирующем входе. Один резистор между неинвертирующим входом и землей устанавливает выходное напряжение; установка этого резистора на ноль дает нулевой выходной сигнал.Любое выходное напряжение может быть получено от нуля до максимума, определяемого входным источником питания.

    Использование источника истинного тока позволяет регулятору демонстрировать усиление и частотную характеристику независимо от положительного входного импеданса. Старые регулируемые регуляторы изменяют усиление контура в зависимости от выходного напряжения и изменяют полосу пропускания при обходе регулировочного штифта. Для LT3080 коэффициент усиления контура не изменяется при изменении выходного напряжения или обходе. Регулировка выхода не фиксируется в процентах от выходного напряжения, а составляет фиксированную долю милливольт.Использование источника истинного тока позволяет обеспечить стабилизацию всего коэффициента усиления буферного усилителя, и никакое усиление не требуется для повышения опорного напряжения до более высокого выходного напряжения.

    ИС может работать в двух режимах. Один из них — это трехконтактный режим, который соединяет управляющий контакт с входным контактом питания, что ограничивает его падение до 1,35 В. В качестве альтернативы вы можете подключить вывод «control» к более высокому напряжению, а вывод питания IN к более низкому напряжению, что приведет к падению напряжения 350 мВ на выводе IN и минимизации рассеиваемой мощности.Это позволяет источнику питания 1,1 А регулировать от 2,5VIN до 1,8VOUT или от 1,8VIN до 1,2VOUT с низким уровнем рассеивания.

    Импульсные ИС

    На рис. 7-4 показан упрощенный ШИМ-контроллер, используемый с импульсным преобразователем. Во время работы часть выходного постоянного напряжения возвращается в усилитель ошибки, который заставляет компаратор управлять временем включения и выключения ШИМ. На рис. 7-4 показано, как изменяется ширина импульса ШИМ для разных процентов времени включения и выключения. Чем больше время включения, тем выше выпрямленное выходное напряжение постоянного тока.Регулировка выходного напряжения сохраняется, если выходной сигнал отфильтрованного силового MOSFET имеет тенденцию к изменению, если это происходит, обратная связь регулирует рабочий цикл ШИМ, чтобы поддерживать выходное напряжение на желаемом уровне.

    7-4. Контроллер PWM генерирует прямоугольные волны разной ширины в зависимости от обратной связи по выходному напряжению.

    Для генерации сигнала ШИМ усилитель ошибки принимает входной сигнал обратной связи и стабильное опорное напряжение для создания выходного сигнала, связанного с разностью двух входов.Компаратор сравнивает выходное напряжение усилителя ошибки с пилообразным сигналом генератора, создавая модулированную ширину импульса. Выход компаратора применяется к логической схеме переключения, выход которой поступает на выходной драйвер для внешнего силового полевого МОП-транзистора. Логика переключения обеспечивает возможность включения или отключения сигнала ШИМ, подаваемого на силовой полевой МОП-транзистор.

    Большинство микросхем ШИМ-контроллеров обеспечивают токоограничивающую защиту путем измерения выходного тока. Если вход считывания тока превышает определенный порог, он завершает текущий цикл (поцикловое ограничение тока).

    Компоновка схемы имеет решающее значение при использовании резистора считывания тока, который должен быть типа с низкой индуктивностью. Расположите конденсатор фильтра считывания тока очень близко и подключите непосредственно к выводу PWM IC. Кроме того, все чувствительные к шуму маломощные заземляющие соединения должны быть соединены вместе около IC GND, а одно соединение должно быть выполнено с заземлением питания (точка заземления сенсорного резистора).

    В большинстве микросхем ШИМ-контроллеров частоту генератора задает один внешний резистор или конденсатор.Чтобы установить желаемую частоту генератора, используйте уравнение в таблице данных контроллера для расчета номинала резистора.

    Некоторые преобразователи ШИМ включают возможность синхронизации генератора с внешними часами с частотой, которая либо выше, либо ниже частоты внутреннего генератора. Если нет необходимости в синхронизации, подключите вывод синхронизации к GND, чтобы предотвратить шумовые помехи.

    Поскольку ИС ШИМ является частью цепи обратной связи, на входе усилителя ошибки должна использоваться схема частотной компенсации для обеспечения стабильности системы.

    Типичный преобразователь мощности принимает входной сигнал постоянного тока, преобразует его в частоту коммутации, а затем выпрямляет его для получения выходного постоянного тока. Часть его выхода постоянного тока сравнивается с опорным напряжением (V REF ) и управляет ШИМ. Если выходное напряжение имеет тенденцию к увеличению, напряжение, подаваемое обратно в схему ШИМ, снижает ее рабочий цикл, в результате чего ее выходное напряжение уменьшается и поддерживается надлежащее регулируемое напряжение. И наоборот, если выходное напряжение имеет тенденцию к снижению, обратная связь приводит к увеличению рабочего цикла переключателя мощности, поддерживая регулируемый выход при надлежащем напряжении.

    Обычно силовой полупроводниковый переключатель включается и выключается с частотой, которая может находиться в диапазоне от 100 кГц до 1 МГц, в зависимости от типа ИС. Частота переключения определяет физический размер и стоимость катушек индуктивности, конденсаторов и трансформаторов фильтра. Чем выше частота переключения, тем меньше физический размер и стоимость компонентов. Чтобы оптимизировать эффективность, материал магнитопровода для индуктора и трансформатора должен соответствовать частоте переключения. То есть материал сердечника трансформатора / катушки индуктивности следует выбирать таким образом, чтобы он эффективно работал на частоте переключения.

    На рис. 7-5 показана упрощенная схема импульсного регулятора напряжения. Для импульсных преобразователей постоянного и постоянного тока требуется средство для изменения выходного напряжения в ответ на изменения нагрузки. Один из подходов заключается в использовании широтно-импульсной модуляции (ШИМ), которая управляет входом в соответствующий переключатель питания. Сигнал ШИМ состоит из двух значений: ВКЛ и ВЫКЛ. Фильтр нижних частот, подключенный к выходу переключателя питания, обеспечивает напряжение, пропорциональное времени включения и выключения контроллера ШИМ.

    7-5. Импульсный преобразователь использует широтно-импульсный модулятор для управления регулированием

    Существует два типа импульсных преобразователей: изолированные и неизолированные, что зависит от наличия прямого пути постоянного тока от входа к выходу. В изолированном преобразователе используется трансформатор, обеспечивающий изоляцию входного и выходного напряжения (рис. 7-6).

    7-6. Изолированный импульсный преобразователь использует трансформатор для изоляции.

    В неизолированном преобразователе обычно используется индуктор, и между входом и выходом нет развязки по напряжению (рис. 7-7). Для подавляющего большинства приложений подходят неизолированные преобразователи. Однако в некоторых приложениях требуется изоляция между входным и выходным напряжениями. Преимущество преобразователя на основе трансформатора заключается в том, что он может легко создавать несколько выходных напряжений, тогда как преобразователь на основе индуктора обеспечивает только один выход.

    7-7.Неизолированный импульсный преобразователь.

    Топологии цепей

    В преобразователях питания постоянного тока используются две основные топологии ИС. Если выходное напряжение ниже входного напряжения, ИС называется понижающим преобразователем. Если выходное напряжение выше входного напряжения, ИС называется повышающим преобразователем.

    В своей базовой схеме (рис. 7-8) понижающий стабилизатор принимает входной сигнал постоянного тока, преобразует его в частоту переключения ШИМ (широтно-импульсный модулятор), которая управляет выходом силового полевого МОП-транзистора (Q1).Внешний выпрямитель, катушка индуктивности и выходной конденсатор создают регулируемый выход постоянного тока. ИС регулятора сравнивает часть выпрямленного выходного напряжения постоянного тока с опорным напряжением (V REF ) и изменяет рабочий цикл ШИМ для поддержания постоянного выходного напряжения постоянного тока. Если выходное напряжение имеет тенденцию к увеличению, ШИМ сокращает свой рабочий цикл, вызывая уменьшение выходного сигнала и поддержание регулируемого выходного сигнала при надлежащем напряжении. И наоборот, если выходное напряжение имеет тенденцию к снижению, обратная связь заставляет рабочий цикл ШИМ увеличиваться и поддерживать регулируемый выход.

    7.8. Базовый понижающий преобразователь; индуктор всегда «противостоит» входному напряжению.

    Топология понижающего или понижающего регулятора имеет преимущества простоты и низкой стоимости. Однако он имеет ограниченный диапазон мощности, и его прямой путь постоянного тока от входа к выходу может создать проблему, если есть закороченный переключатель питания.

    LT8602

    LT8602 от Linear Technology представляет собой монолитный понижающий импульсный стабилизатор постоянной частоты, работающий по току, с четырьмя выходными каналами (рис.7-9). Два канала — это каналы высокого напряжения с входом от 3 до 42 В, а два других — каналы низкого напряжения с входом от 2,6 до 5,5 В.

    7-9. Четырехканальный понижающий преобразователь LT8602 имеет два канала высокого напряжения с входом от 3 до 42 В, а два других — низковольтные каналы с входом от 2,6 до 5,5 В.

    В ИС используется один генератор, который генерирует два тактовых сигнала (CLK) на 180 градусов. не в фазе. Каналы 1 и 3 работают с CLK1, а каналы 2 и 4 работают с CLK2.Понижающий стабилизатор потребляет входной ток только во время верхнего цикла включения, поэтому многофазный режим снижает пиковый входной ток и удваивает частоту входного тока. Это снижает как пульсации входного тока, так и требуемую входную емкость.

    Каждый канал высокого напряжения (HV) представляет собой синхронный понижающий стабилизатор, который работает от собственного вывода PVIN. Внутренний полевой МОП-транзистор с максимальной мощностью включается в начале каждого цикла генератора и выключается, когда ток, протекающий через верхний МОП-транзистор, достигает уровня, определяемого его усилителем ошибки.Усилитель ошибки измеряет выходное напряжение через внешний резистивный делитель, подключенный к выводу FB, для управления пиковым током в верхнем переключателе.

    Пока верхний полевой МОП-транзистор выключен, нижний полевой МОП-транзистор включен на оставшуюся часть цикла генератора или до тех пор, пока ток в катушке индуктивности не начнет реверсировать. Если в результате перегрузки через нижний переключатель проходит ток более 2 А (канал 1) или 3,3 А (канал 2), следующий тактовый цикл будет отложен до тех пор, пока ток переключения не вернется к более низкому безопасному уровню.

    Высоковольтные каналы имеют входы Track / Soft-Start (TRKSS1, TRKSS2). Когда на этом выводе ниже 1 В, преобразователь регулирует вывод FB на напряжение TRKSS вместо внутреннего опорного напряжения. Вывод TRKSS имеет подтягивающий ток 2,4 мкА. Вывод TRKSS также может использоваться, чтобы позволить выходу отслеживать другой регулятор, либо другой канал высокого напряжения, либо внешний регулятор.

    Как показано на упрощенной схеме индуктивно-повышающего преобразователя постоянного тока (рис. 7-10), включение силового МОП-транзистора вызывает нарастание тока через катушку индуктивности.При выключении силового МОП-транзистора ток через диод направляется к выходному конденсатору. Несколько циклов переключения создают напряжение выходного конденсатора из-за заряда, который он накапливает от тока катушки индуктивности. В результате выходное напряжение выше входного.

    7-10. Базовый неизолированный импульсный индуктивно-повышающий преобразователь постоянного тока.

    LTC3124

    Типичная прикладная схема LTC3124 компании Linear Technology, показанная на рис. 7-11, использует внешний резистивный делитель напряжения от VOUT до FB и до SGND для программирования выхода из 2.От 5 до 15 В. При настройке на выход 12 В он может непрерывно выдавать до 1,5 А от входа 5 В. Ограничение по току 2,5 А на фазу, а также возможность программирования выходного напряжения до 15 В делают его пригодным для различных приложений.

    7-11. В прикладной схеме LTC3124 используется внешний резистивный делитель напряжения от VOUT до FB и до SGND для программирования выхода от 2,5 до 15 В.

    Использование двух фаз, расположенных на равном расстоянии 180 град. кроме того, удваивает частоту пульсаций на выходе и значительно снижает ток пульсаций выходного конденсатора.Хотя для этой архитектуры требуются две катушки индуктивности, а не одна, она имеет несколько важных преимуществ:

    • Значительно более низкий пиковый ток индуктивности позволяет использовать индукторы меньшего размера и с меньшими затратами.

    • Значительно уменьшенные пульсации выходного тока минимизируют требования к выходной емкости.

    • Более высокочастотные пульсации на выходе легче отфильтровать для приложений с низким уровнем шума.

    • Входной ток пульсации также снижен для снижения шума на VIN.

    При двухфазной работе одна фаза всегда подает ток на нагрузку, если VIN больше половины VOUT (для рабочих циклов менее 50%).По мере дальнейшего уменьшения рабочего цикла, ток нагрузки между двумя фазами начинает перекрываться, происходя одновременно для растущей части каждой фазы по мере того, как рабочий цикл приближается к нулю. По сравнению с однофазным преобразователем, это значительно снижает как выходной ток пульсации, так и пиковый ток в каждой катушке индуктивности.

    LTC3124 обеспечивает преимущество для систем с батарейным питанием, он может запускаться от входов с низким напряжением 1,8 В и продолжать работать от входов с низким напряжением 0.5 В при выходном напряжении более 2,5 В. Это увеличивает время работы за счет максимального увеличения количества энергии, извлекаемой из входного источника. Ограничивающими факторами для приложения являются способность источника питания обеспечивать достаточную мощность на выходе при низком входном напряжении и максимальный рабочий цикл, который ограничен 94%. При низких входных напряжениях небольшие падения напряжения из-за последовательного сопротивления становятся критическими и ограничивают подачу мощности преобразователем.

    Даже если входное напряжение превышает выходное напряжение, ИС будет регулировать выход, обеспечивая совместимость с любым типом батарей.LTC3124 — идеальное решение для повышающих приложений, требующих выходного напряжения до 15 В, где определяющими факторами являются высокая эффективность, небольшие размеры и высокая надежность.

    LTC3110

    LTC3110 от Linear Technology представляет собой комбинацию понижающе-повышающего регулятора / зарядного устройства постоянного / постоянного тока на 2 А с выбираемыми контактами режимами работы для зарядки и резервного копирования системы (рис. 7-12). Это двунаправленное, программируемое зарядное устройство суперконденсатора с понижающим и повышающим входным током обеспечивает активную балансировку заряда для суперконденсаторов 1-й или 2-й серии.Его запатентованная топология понижающего-повышающего шума с низким уровнем шума выполняет работу двух отдельных импульсных регуляторов, экономя размер, стоимость и сложность.

    7-12. LTC3110 — это комбинация понижающе-повышающего регулятора / зарядного устройства постоянного / постоянного тока на 2 А с выбираемыми контактами режимами работы для зарядки и резервного питания системы.

    Двунаправленный относится к потоку постоянного тока, связанному с VSYS, выводом источника питания для резервного выходного напряжения системы и входного напряжения зарядного тока. В одном направлении LTC3110 работает как понижающий-повышающий стабилизатор, снимая ток с суперконденсатора и обеспечивая регулируемое напряжение на нагрузке на выводе VSYS.В другом направлении знак тока меняется на противоположный, и точно ограниченный ток течет от системной шины обратно, чтобы зарядить суперконденсатор. Если VSYS падает из-за потери мощности, он может автономно переключать направление для стабилизации напряжения системы, подавая ток от суперконденсатора в VSYS.

    Диапазон напряжения конденсатора / батареи от 0,1 В до 5,5 В LTC3110 и диапазона резервного напряжения системы от 1,8 В до 5,25 В делают его пригодным для широкого спектра приложений резервного копирования с использованием суперконденсаторов или батарей, например:

    • Он объединяет все функции, необходимые для использования преимуществ суперконденсаторов, зарядки, балансировки и резервного копирования.

    • Ограничение входного тока с точностью ± 2% исключает использование внешних компонентов, снижает IQ и позволяет использовать все возможности источника питания без превышения пределов безопасности.

    • Распределение входной мощности позволяет LTC3110 и другим преобразователям постоянного / постоянного тока или нагрузкам использовать один и тот же источник питания с минимальным снижением номинальных характеристик / запасом.

    • Активный балансировщик синхронно перемещает заряд между конденсаторами, устраняя внешние балластные резисторы и их потери мощности, что приводит к меньшему количеству циклов перезарядки и более быстрой зарядке.

    • Он может автономно переходить из режима зарядки в резервный или переключать режимы на основе внешней команды.

    На рис. 7-13 ШИМ-регулятор включает и выключает полевой МОП-транзистор. Без обратной связи рабочий цикл ШИМ определяет выходное напряжение, которое вдвое превышает входное для рабочего цикла 50%. Увеличение напряжения в два раза приводит к тому, что входной ток в два раза превышает выходной ток. В реальной схеме с потерями входной ток немного выше.

    7-13.Базовый прямой преобразователь может работать как повышающий или понижающий преобразователь. Теоретически он должен использовать «идеальный» трансформатор без потоков утечки, нулевого тока намагничивания и потерь.

    Его преимущества — простота, низкая стоимость и возможность увеличения мощности без использования трансформатора. Недостатками являются ограниченный диапазон мощности и относительно высокая пульсация на выходе из-за нерабочего времени, исходящего от выходного конденсатора.

    Выбор индуктора является важной частью этой схемы повышения, поскольку значение индуктивности влияет на входные и выходные пульсации напряжения и токи.Индуктор с низким последовательным сопротивлением обеспечивает оптимальную эффективность преобразования энергии. Выберите номинальный ток насыщения катушки индуктивности так, чтобы он был выше установившегося пикового тока катушки индуктивности в приложении.

    Для обеспечения стабильности для рабочих циклов выше 50% индуктору требуется минимальное значение, определяемое минимальным входным напряжением и максимальным выходным напряжением. Это зависит от частоты переключения, рабочего цикла и сопротивления открытого МОП-транзистора.

    Топология прямого преобразователя (рис.7-13) представляет собой изолированную версию понижающего преобразователя. Использование трансформатора позволяет прямому преобразователю быть либо повышающим, либо понижающим преобразователем, хотя наиболее распространенным применением является понижающий преобразователь. Основными преимуществами прямой топологии являются ее простота и гибкость.

    Другая топология с трансформаторной изоляцией, упрощенный обратноходовой преобразователь (рис. 7-14), работает в режиме непрямого преобразования. Топология Flyback — одно из наиболее распространенных и экономичных средств для генерации умеренного уровня изолированного питания в преобразователях переменного тока в постоянный.Он обладает большей гибкостью, поскольку может легко генерировать несколько выходных напряжений путем добавления дополнительных вторичных обмоток трансформатора. Недостатком является то, что регулирование и пульсации на выходе не так жестко контролируются, как в некоторых других топологиях, и нагрузки на выключатель питания выше.

    7-14. Трансформатор базового обратноходового преобразователя обычно имеет воздушный зазор, что позволяет ему накапливать энергию во время работы и передавать энергию диоду во время простоя.

    LT3798

    LT3798 компании

    Linear Technology представляет собой изолированный контроллер обратного хода с одноступенчатой ​​активной коррекцией коэффициента мощности (PFC). Эффективность более 86% может быть достигнута при уровне выходной мощности до 100 Вт. В зависимости от выбора внешних компонентов, он может работать в диапазоне входных напряжений от 90 до 277 В переменного тока и может легко увеличиваться или уменьшаться. Кроме того, LT3798 может использоваться в приложениях с высоким входным напряжением постоянного тока, что делает его пригодным для промышленных, электромобилей, горнодобывающей промышленности и медицины.

    На рис. 7-15 показано типичное применение LT3798. Эта ИС представляет собой контроллер переключения режима тока, предназначенный специально для создания источника постоянного тока / постоянного напряжения с изолированной топологией обратного хода. Для поддержания регулирования в этой топологии обычно используется обратная связь по выходному напряжению и току от изолированной вторичной обмотки выходного трансформатора до VIN. Обычно для этого требуется оптоизолятор. Вместо этого LT3798 использует пиковый ток внешнего полевого МОП-транзистора, полученный из считывающего резистора, для определения выходного тока обратноходового преобразователя без использования оптопары.

    7-15. Контроллер обратного хода LT3798 с одноступенчатой ​​активной коррекцией коэффициента мощности (PFC).

    Как показано на рис. 7-15, выходной трансформатор имеет три обмотки, включая выходную. Сток внешнего полевого МОП-транзистора подключается к одной из первичных обмоток. Третья обмотка трансформатора определяет выходное напряжение, а также подает питание для установившегося режима работы. Вывод VIN подает питание на внутренний LDO, который генерирует 10 В на выводе INTVCC. Схема внутреннего управления состоит из двух усилителей ошибок, схемы минимума, умножителя, передаточного затвора, компаратора тока, генератора низкого выходного тока и главной защелки.Кроме того, схема выборки и хранения контролирует выходное напряжение третьей обмотки. Компаратор обнаруживает режим прерывистой проводимости (DCM) с конденсатором и последовательным резистором, подключенными к третьей обмотке.

    Во время типичного цикла драйвер затвора включает внешний полевой МОП-транзистор, так что ток течет в первичной обмотке. Этот ток увеличивается со скоростью, пропорциональной входному напряжению и обратно пропорциональной индуктивности намагничивания трансформатора. Контур управления определяет максимальный ток, и компаратор выключает переключатель, когда он достигает этого значения.Когда переключатель выключается, энергия трансформатора вытекает из вторичной обмотки через выходной диод D1. Этот ток уменьшается со скоростью, пропорциональной выходному напряжению. Когда ток уменьшается до нуля, выходной диод выключается, и напряжение на вторичной обмотке начинает колебаться в зависимости от паразитной емкости и намагничивающей индуктивности трансформатора.

    Напряжение на всех обмотках одинаковое, поэтому третья обмотка тоже работает. Конденсатор, подключенный к выводу DCM, отключает компаратор, который служит детектором du / dt при возникновении звонка.Эта временная информация используется для расчета выходного тока. Детектор du / dt ожидает, пока сигнал вызывного сигнала достигнет своего минимального значения, а затем включается переключатель. Такое переключение аналогично переключению при нулевом напряжении и сводит к минимуму потери энергии при включении переключателя, повышая эффективность до 5%. Эта ИС работает на границе непрерывного и прерывистого режимов проводимости, что называется критическим режимом проводимости (или граничным режимом проводимости). Работа в режиме критической проводимости позволяет использовать трансформатор меньшего размера, чем конструкции, работающие в режиме постоянной проводимости.

    SEPIC

    Несимметричный преобразователь первичной индуктивности (SEPIC) представляет собой топологию преобразователя постоянного / постоянного тока, который обеспечивает положительное регулируемое выходное напряжение от входного напряжения, которое изменяется сверху вниз от выходного напряжения. В упрощенном преобразователе SEPIC, показанном на рис. 7-16, используются две катушки индуктивности, L1 и L2, которые могут быть намотаны на один и тот же сердечник, поскольку на протяжении всего цикла переключения к ним прикладываются одинаковые напряжения. Использование спаренного дросселя занимает меньше места на ПК. плата и, как правило, дешевле, чем два отдельных индуктора.Конденсатор C4 изолирует вход от выхода и обеспечивает защиту от короткого замыкания нагрузки.

    7-16. Две катушки индуктивности в базовом преобразователе SEPIC могут быть намотаны на один и тот же сердечник, поскольку в течение всего цикла переключения к ним прикладываются одинаковые напряжения.

    ИС регулирует выход с помощью ШИМ-управления в текущем режиме, которое включает силовой полевой МОП-транзистор Q1 в начале каждого цикла переключения. Входное напряжение подается на катушку индуктивности и сохраняет энергию по мере нарастания тока в катушке индуктивности.Во время этой части цикла переключения ток нагрузки обеспечивается выходным конденсатором. Когда ток катушки индуктивности повышается до порога, установленного выходом усилителя ошибки, выключатель питания выключается, и внешний диод Шоттки смещается в прямом направлении. Катушка индуктивности передает накопленную энергию для пополнения выходного конденсатора и подачи тока нагрузки. Эта операция повторяется в каждом цикле переключения. Рабочий цикл преобразователя определяется компаратором управления ШИМ, который сравнивает выходной сигнал усилителя ошибки и текущий сигнал.

    Сигнал пилообразного изменения от генератора добавляется к пилообразному сигналу тока. Эта компенсация наклона предназначена для предотвращения субгармонических колебаний, которые присущи управлению режимом тока при скважности выше 50%. Контур обратной связи регулирует вывод FB до опорного напряжения через усилитель ошибки. Выход усилителя ошибки подключен к выводу COMP. К выводу COMP подключена внешняя RC-компенсационная цепь для оптимизации контура обратной связи для обеспечения стабильности и переходной характеристики.

    TPS61170

    TPS61170 — это монолитный высоковольтный импульсный стабилизатор от Texas Instruments со встроенным силовым полевым МОП-транзистором 1,2 А, 40 В. Устройство может быть сконфигурировано в нескольких стандартных топологиях регулятора, включая повышающий и SEPIC. Рисунок 7-17 показывает конфигурацию SEPIC. Устройство имеет широкий диапазон входного напряжения для поддержки приложений с входным напряжением от батарей или регулируемых шин питания 5 В, 12 В.

    7-17. TPS61170 сконфигурирован как преобразователь SEPIC.

    В ИС встроен полевой транзистор нижнего уровня на 40 В для обеспечения выходного напряжения до 38 В. Устройство регулирует выход с помощью токового режима управления ШИМ (широтно-импульсной модуляцией). Частота переключения ШИМ составляет 1,2 МГц (типовая). Схема управления ШИМ включает переключатель в начале каждого цикла переключения. Входное напряжение подается на катушку индуктивности и сохраняет энергию по мере нарастания тока в катушке индуктивности. Во время этой части цикла переключения ток нагрузки обеспечивается выходным конденсатором.Когда ток катушки индуктивности повышается до порога, установленного выходом усилителя ошибки, выключатель питания выключается, и внешний диод Шоттки смещается в прямом направлении. Катушка индуктивности передает накопленную энергию для пополнения выходного конденсатора и подачи тока нагрузки. Эта операция повторяет каждый цикл переключения. Как показано на блок-схеме, рабочий цикл преобразователя определяется компаратором управления ШИМ, который сравнивает выходной сигнал усилителя ошибки и текущий сигнал.

    TPS61170 работает на 1.Частота коммутации 2 МГц, что позволяет использовать низкопрофильные катушки индуктивности и недорогие керамические входные и выходные конденсаторы. Он имеет встроенную защиту, включая ограничение перегрузки по току, плавный пуск и тепловое отключение.

    Гистерезисный преобразователь

    Базовый гистерезисный регулятор, показанный на рис. 7-18, представляет собой тип импульсного регулятора, в котором не используется ШИМ. Он состоит из компаратора с входным гистерезисом, который сравнивает выходное напряжение обратной связи с опорным напряжением. Когда напряжение обратной связи превышает опорное напряжение, выходной сигнал компаратора становится низким, отключая понижающий переключатель MOSFET.Переключатель остается выключенным до тех пор, пока напряжение обратной связи не упадет ниже опорного напряжения гистерезиса. Затем выходной сигнал компаратора становится высоким, включается переключатель и позволяет выходному напряжению снова расти.

    7-18. Базовый гистерезисный регулятор представляет собой самый быстрый способ управления преобразователем постоянного тока.

    Базовый гистерезисный преобразователь состоит из компаратора ошибок, управляющей логики и внутреннего задания. Выход обычно управляет синхронным выпрямителем, который может быть внутренним или внешним.Часть выходного напряжения возвращается в компаратор ошибок, который сравнивает его с опорным напряжением. Если выходное напряжение стремится к низкому уровню относительно опорного напряжения, выходной конденсатор заряжается до тех пор, пока не достигнет равновесия с опорным напряжением. Затем компаратор включает синхронный выпрямитель. Когда синхронный выпрямитель включен, выходное напряжение падает достаточно низко, чтобы преодолеть гистерезис компаратора, после чего синхронный выпрямитель отключается, начиная новый цикл.

    В гистерезисном регуляторе нет усилителя ошибки напряжения, поэтому его реакция на любое изменение тока нагрузки или входного напряжения практически мгновенно. Следовательно, гистерезисный регулятор представляет собой самый быстрый способ управления преобразователем постоянного тока. Недостатком обычного гистерезисного регулятора является то, что его частота изменяется пропорционально ESR выходного конденсатора. Поскольку начальное значение часто плохо контролируется, а ESR электролитических конденсаторов также изменяется с температурой и возрастом, практические изменения ESR могут легко привести к изменениям частоты порядка одного-трех.Однако существует модификация гистерезисной топологии, которая устраняет зависимость рабочей частоты от ESR.

    LM3475

    LM3475 — это понижающий (понижающий) контроллер постоянного и переменного тока, в котором используется гистерезисная архитектура управления, которая обеспечивает регулирование с частотно-импульсной модуляцией (ЧИМ) (рис. 7-19). Схема гистерезисного управления не использует внутренний генератор. Частота переключения зависит от внешних компонентов и условий эксплуатации. Рабочая частота снижается при малых нагрузках, что обеспечивает превосходную эффективность по сравнению с архитектурами с ШИМ.Поскольку переключение напрямую контролируется выходными условиями, гистерезисное управление обеспечивает исключительную переходную характеристику нагрузки.

    7-19. LM3475 — это понижающий (понижающий) контроллер постоянного / переменного тока, в котором используется гистерезисная архитектура управления, которая обеспечивает регулирование с частотно-импульсной модуляцией (ЧИМ).

    LM3475 использует контур управления напряжением на основе компаратора. Напряжение на выводе обратной связи сравнивается с опорным напряжением 0,8 В с гистерезисом 21 мВ. Когда входное напряжение FB компаратора падает ниже опорного напряжения, выход компаратора становится низким.Это приводит к тому, что выходной сигнал драйвера PGATE переводит затвор PFET в низкий уровень и включает PFET.

    При включенном PFET входной источник питания заряжает COUT и подает ток на нагрузку через PFET и катушку индуктивности. Ток через катушку индуктивности линейно нарастает, а выходное напряжение увеличивается. Когда напряжение FB достигает верхнего порога (опорное напряжение плюс гистерезис), выход компаратора становится высоким, и PGATE выключает PFET. Когда PFET выключается, загорается диод, и ток через катушку индуктивности падает.Когда выходное напряжение падает ниже опорного напряжения, цикл повторяется.

    Преобразователь Cuk

    Преобразователь Cuk — это преобразователь постоянного тока, величина выходного напряжения которого может быть больше или меньше входного напряжения. По сути, это повышающий преобразователь, за которым следует понижающий преобразователь с конденсатором для передачи энергии. Это инвертирующий преобразователь, поэтому выходное напряжение отрицательно по отношению к входному. Неизолированный преобразователь Cuk может иметь только противоположную полярность между входом и выходом.Он использует конденсатор в качестве основного элемента накопления энергии, в отличие от большинства других типов преобразователей, в которых используется катушка индуктивности.

    Как и другие преобразователи (понижающий преобразователь, повышающий преобразователь, понижающий-повышающий преобразователь), преобразователь Cuk может работать в режиме непрерывного или прерывистого тока. Однако, в отличие от этих преобразователей, он также может работать в режиме прерывистого напряжения (напряжение на конденсаторе падает до нуля во время цикла коммутации).

    LM2611 от Texas Instruments представляет собой преобразователь Cuk, который состоит из контроллера режима тока со встроенным первичным переключателем и встроенной схемой измерения тока (рис.7-20). Обратная связь подключена к усилителю внутренней ошибки и использует внутреннюю компенсацию типа II / III. Генератор рампы обеспечивает некоторую компенсацию наклона системе. Вывод SHDN — это логический вход, предназначенный для отключения преобразователя.

    7-20. LM2611 сконфигурирован как преобразователь Cuk

    Импульсный ШИМ-стабилизатор с фиксированной частотой

    А, LM2611 имеет опорное напряжение -1,23 В, что делает его идеальным для использования в преобразователе Cuk. Преобразователь Cuk инвертирует вход и может повышать или понижать абсолютное значение.Используя катушки индуктивности как на входе, так и на выходе, преобразователь Cuk производит очень небольшие колебания входного и выходного тока. Это значительное преимущество по сравнению с другими инвертирующими топологиями, такими как повышенно-понижающий и обратный.

    Многофазный преобразователь

    По мере увеличения требований к току возрастает и необходимость увеличения количества фаз в преобразователе. Однофазные понижающие контроллеры подходят для низковольтных устройств с токами примерно до 25 А, однако рассеивание мощности и эффективность являются проблемой при более высоких токах.Одним из подходов к более высоким токовым нагрузкам является многофазный понижающий контроллер. Их производительность делает их идеальными для питания персональной электроники, портативных промышленных устройств, твердотельных накопителей, приложений с малыми ячейками, ПЛИС и микропроцессоров.

    Двухфазная схема, показанная на рис. 7-21, имеет чередование фаз, что снижает токи пульсаций на входе и выходе. Это также уменьшает количество горячих точек на печатной плате или отдельном компоненте. Двухфазный понижающий преобразователь вдвое снижает рассеиваемую мощность тока RMS в полевых МОП-транзисторах и катушках индуктивности.Перемежение также снижает переходные потери.

    7-21. Базовый многофазный преобразователь имеет две чередующиеся фазы, что снижает токи пульсаций на входе и выходе.

    Многофазные элементы работают на общей частоте, но сдвинуты по фазе, так что переключение преобразования происходит через равные промежутки времени, контролируемые общей микросхемой управления. Микросхема управления смещает время переключения каждого преобразователя таким образом, чтобы фазовый угол между переключениями преобразователя составлял 360 градусов./ n, где n — количество фаз преобразователя. Выходы преобразователей параллельны, так что эффективная частота пульсаций на выходе равна n × f, где f — рабочая частота каждого преобразователя. Это обеспечивает лучшие динамические характеристики и значительно меньшую развязывающую емкость по сравнению с однофазной системой.

    Разделение тока между многофазными ячейками необходимо, чтобы не потреблять слишком много тока. В идеале каждая многофазная ячейка должна потреблять одинаковое количество тока.Чтобы добиться равного распределения тока, необходимо контролировать и контролировать выходной ток для каждой ячейки.

    Многофазный подход также предлагает преимущества упаковки. Каждый преобразователь выдает 1 / n от общей выходной мощности, уменьшая физический размер и величину магнитных полей, используемых в каждой фазе. Кроме того, силовые полупроводники в каждой фазе должны обрабатывать только 1 / n общей мощности. Это распределяет внутреннее рассеивание мощности между несколькими силовыми устройствами, устраняя концентрированные источники тепла и, возможно, необходимость в радиаторе.Несмотря на то, что здесь используется больше компонентов, компромисс по стоимости может быть благоприятным.

    Многофазные преобразователи

    имеют важные преимущества:

    • Пониженный среднеквадратичный ток конденсатора входного фильтра, позволяет использовать меньшие и менее дорогие типы

    • Распределенный отвод тепла, снижает температуру горячих точек, повышая надежность

    • Повышенная общая мощность

    • Повышенная эквивалентная частота без увеличения коммутационных потерь, что позволяет использовать меньшие эквивалентные индуктивности, сокращающие переходное время нагрузки.

    • Пониженный ток пульсаций в выходном конденсаторе снижает пульсации напряжения на выходе и позволяет использовать меньшие и менее дорогие выходные конденсаторы

    • Превосходная реакция на переходные процессы при нагрузке во всем диапазоне нагрузок

    Многофазные преобразователи

    также имеют некоторые недостатки, которые следует учитывать при выборе количества фаз, например:

    • Необходимость в большем количестве переключателей и выходных катушек индуктивности, чем в однофазной конструкции, что приводит к более высокой стоимости системы, чем однофазное решение, по крайней мере, ниже определенного уровня мощности

    • Более сложный контроль

    • Возможность неравномерного распределения тока между фазами

    • Добавлена ​​сложность топологии схемы

    Синхронное выпрямление

    КПД — важный критерий при проектировании преобразователей постоянного тока, что означает, что потери мощности должны быть минимизированы.Эти потери вызваны переключателем мощности, магнитными элементами и выходным выпрямителем. Для уменьшения потерь в переключателе мощности и магнитных потерь требуются компоненты, которые могут эффективно работать на высоких частотах переключения. В выходных выпрямителях могут использоваться диоды Шоттки, но синхронное выпрямление (рис. 7-22), состоящее из силовых полевых МОП-транзисторов, может обеспечить более высокий КПД.

    7-22. Синхронный выпрямитель более эффективен, чем диодный выпрямитель.

    Полевые МОП-транзисторы

    имеют более низкие потери прямой проводимости, чем диоды Шоттки.В отличие от обычных самокоммутирующихся диодов, полевые МОП-транзисторы включаются и выключаются с помощью управляющего сигнала затвора, синхронизированного с работой преобразователя. Основным недостатком синхронного выпрямления является дополнительная сложность и стоимость, связанные с устройствами MOSFET и соответствующей управляющей электроникой. Однако при низких выходных напряжениях результирующее повышение эффективности более чем компенсирует недостаток стоимости во многих приложениях.

    Компенсация регулятора напряжения

    Импульсные источники питания

    используют отрицательную обратную связь для регулирования своей выходной мощности до желаемого значения.Оптимальная система управления SMPS, использующая отрицательную обратную связь, должна обеспечивать скорость, точность и отклик без колебаний. Один из способов добиться этого — ограничить частотный диапазон, в котором реагирует SMPS. Чтобы быть стабильным, частотный диапазон или полоса пропускания должны соответствовать частоте, на которой тракт передачи с обратной связью от входа к выходу падает на 3 дБ (так называемая частота кроссовера). Обязательно ограничивайте полосу пропускания до того, что на самом деле требуется вашему приложению. Принятие слишком широкой полосы пропускания влияет на помехозащищенность системы, а слишком низкая пропускная способность приводит к плохой переходной характеристике.Вы можете ограничить полосу пропускания системы управления SMPS, сформировав ее кривую усиления контура (V OUT / V IN ) с помощью блока компенсатора G (s), показанного на рис. 7-23. Этот блок гарантирует, что после определенной частоты амплитуда усиления контура упадет и опустится ниже 1 или 0 дБ.

    7-23. Типичная модель импульсного источника питания с отрицательной обратной связью использует блок компенсации G (s) и H (s), коэффициент усиления разомкнутого контура. VIN (s) — это вход, а VOUT (s) — это выход.

    Кроме того, для получения отклика, сходящегося к стабильному состоянию, нам необходимо убедиться, что фаза, при которой величина усиления контура равна 1, меньше -180 градусов. Чтобы убедиться, что мы держимся подальше от -180 град. на частоте кроссовера компенсатор G (s) должен адаптировать отклик контура на выбранной частоте кроссовера для создания необходимого запаса по фазе. Соответствующий запас по фазе гарантирует, что, несмотря на внешние возмущения или неизбежные спреды добычи, изменения в усилении контура не поставят под угрозу стабильность системы.Запас по фазе также влияет на переходную характеристику системы. Следовательно, компенсатор G (s) должен обеспечивать желаемые характеристики усиления и фазы.

    Используя анализатор цепей, вы можете определить запасы устойчивости, измерив коэффициент усиления и фазу контура управления, а затем просмотреть полученный график Боде (рис. 7-24), который представляет собой график зависимости коэффициента усиления и фазы от частоты источника питания. . 60 град. запас по фазе предпочтителен, но 45 град. обычно приемлемо. Обычно приемлемым считается запас усиления –10 дБ.Коэффициент усиления и запас по фазе важны, потому что фактические значения компонентов могут изменяться в зависимости от температуры. Таким образом, значения компонентов могут отличаться от блока к блоку при производстве, что приводит к соответствующему изменению коэффициента усиления напряжения и фазы контура управления. Кроме того, значения компонентов могут изменяться со временем и вызывать нестабильность.

    7-24. Типичный график Боде для импульсного стабилизатора напряжения IC показывает частоту кроссовера, усиление и запас по фазе.

    Если значения компонентов приводят к обнулению фазы на частоте кроссовера, регулятор становится нестабильным и колеблется.Целью компенсации является обеспечение наилучшего запаса по усилению и фазе при максимально возможной частоте кроссовера. Высокая частота кроссовера обеспечивает быструю реакцию на изменения тока нагрузки, тогда как высокое усиление на низких частотах обеспечивает быстрое установление выходного напряжения. Значения компонентов и вариации V OUT / V IN могут привести к компромиссу между высокой частотой кроссовера и высоким запасом устойчивости.

    7-25. LM21305 — это ИС импульсного регулятора, в котором используется один узел компенсации, для которого требуются компоненты компенсации RC и CC1, подключенные между контактом COMP и AGND.

    Определение компенсации для источника питания не всегда легко, потому что оценка графика Боде невозможна, когда нет доступа к петле обратной связи к детали. В других случаях доступ к контуру обратной связи затруднен, потому что оборудование интегрировано или потребуется вырезать дорожку на печатной плате. В других случаях устройства либо содержат несколько контуров управления, и только один из них доступен, либо порядок контура управления выше второго порядка, и в этом случае график Боде является плохим предиктором относительной стабильности.Еще одна сложность заключается в том, что во многих портативных электронных устройствах, таких как сотовые телефоны и планшеты, схемы очень малы и густо заполнены, оставляя мало препятствий для доступа к элементам контура управления.

    В вышеуказанных случаях единственный способ проверить стабильность — это оценка неинвазивного запаса стабильности (NISM). Он получен на основе легко доступных измерений выходного импеданса. Математическое соотношение, которое позволяет точно определять стабильность контура управления по данным выходного импеданса, было разработано Picotest и включено в программное обеспечение OMICRON Lab Bode 100 Vector Network Analyzer (VNA).На рис. 7-26 показана испытательная установка для этого измерения.

    7-26. Недоступные измерения выходного импеданса (Пикотест).

    Один из первых методов компенсации предусматривал использование регулятора напряжения с внешними узлами, чтобы разработчик мог вставлять компоненты компенсации. Определение значений компонентов компенсации включало анализ ИС регулятора и его внешних компонентов. После определения необходимой компенсации разработчик смоделировал или измерил схему регулятора с установленными компенсационными компонентами.Для получения желаемых результатов этот процесс обычно требовал нескольких итераций.

    Для правильного внедрения компенсационной сети требуются инженеры со специальными инструментами, навыками и опытом. Если схема была смоделирована и не измерена, разработчик должен был в конечном итоге вставить фактические компоненты компенсации для измерения характеристик источника питания. Моделирование было настолько хорошо, насколько хорошо дизайнер знал компоненты и паразиты. Модель могла быть неполной или отличаться от реальной схемы, поэтому компенсацию необходимо было проверить путем измерения реальной схемы.Неизменно требовалась доработка из-за возможных ошибок, связанных с заменой компонентов. Ремонтные работы также могут изменить характеристики источника питания и повредить цепи, питаемые от регулятора.

    Некоторые поставщики ИС регуляторов включали компоненты внутренней компенсации, поэтому конструкция не нуждалась в дальнейшем анализе. Однако разработчику пришлось использовать внешние компоненты, указанные производителем.

    Единый компенсационный узел был следующим этапом в этой эволюции. Примером этого является ИС импульсного регулятора LM21305 компании Texas Instruments, показанная на рис.7-25. LM21305 обычно требует только одного резистора и конденсатора для компенсации. Однако иногда требовался дополнительный конденсатор.

    Автокомпенсация

    Для устранения проблем, связанных с ручным определением компенсации источника питания, две компании разработали технологию автоматической компенсации. В результате были разработаны ИС регулятора смешанных сигналов с автоматической компенсацией. Это избавило проектировщика от необходимости в специальных инструментах, знаниях или опыте для оптимизации производительности.Автоматическая компенсация устанавливает выходные характеристики таким образом, чтобы изменения из-за допусков компонентов, старения, температуры, входного напряжения и других факторов не влияли на производительность.

    Семейство цифровых источников питания

    CUI NDM2Z (рис. 7-27) включает автоматическую компенсацию с использованием ИС регулятора Intersil / Zilker ZL8101M. Автоматическая компенсация обходит традиционную практику создания маржи для учета вариаций компонентов, что может привести к более высоким затратам на компоненты и более длительным циклам проектирования.

    7-27. В семействе источников питания CUI NDM2Z используется автоматическая компенсация, которая позволяет динамически устанавливать оптимальную стабильность и переходную характеристику.

    Источники питания NDM2Z на 50 А обеспечивают КПД 91% при входном напряжении 12 В постоянного тока и выходном напряжении 1,0 В постоянного тока при нагрузке 50%. Все эти источники питания имеют входной диапазон от 4,5 до 14 В постоянного тока и программируемый выход от 0,6 до 5,0 В постоянного тока в версии 12 А и от 0,6 до 3,3 В постоянного тока в версиях 25 А и 50 А.

    Функции модуля

    включают активное разделение тока, последовательность напряжения, отслеживание напряжения, синхронизацию и распределение фаз, программируемый плавный пуск и останов, а также множество возможностей мониторинга.Простой и легкий в использовании графический интерфейс пользователя CUI помогает в этих проектах.

    ZL8101

    В NMD2Z используется синхронный понижающий контроллер Intersil / Zilker ZL8101, работающий в режиме напряжения, с широтно-импульсным модулятором постоянной частоты (PWM). В этом цифровом контроллере третьего поколения используется специальный оптимизированный конечный автомат для генерации точных импульсов ШИМ и собственный микроконтроллер, используемый для настройки, обслуживания и оптимизации (рис. 7-28). Для этого требуются внешние драйверы, силовые полевые МОП-транзисторы, конденсаторы и катушки индуктивности.Интегрированная подрегулировка позволяет работать от одного источника питания от 4,5 В до 14 В. Используя простые штыревые соединения или стандартные команды PMBus, вы можете настроить обширный набор функций управления питанием с помощью графического интерфейса Intersil PowerNavigator.

    7-28. Блок-схема Intersil ZL8101 IC показывает выходы PWM (PWMH и PWML), которые взаимодействуют с внешним драйвером, таким как ZL1505.

    Первоначально автоматическая компенсация ZL8101 измеряет характеристики силовой передачи и определяет требуемую компенсацию.ИС сохраняет значения компенсации и использует их при последующих входах. После включения ZL8101 готов к регулированию мощности и выполнению задач управления питанием без необходимости программирования. Расширенные параметры конфигурации и изменения конфигурации в реальном времени доступны через интерфейс I2C / SMBus. Встроенная энергонезависимая память (NVM) сохраняет данные конфигурации.

    Вы должны выбирать полевые МОП-транзисторы с внешним питанием в первую очередь для RDS (ON) и во вторую очередь для полного заряда затвора. Фактический выходной ток преобразователя мощности зависит от характеристик драйверов и выходных полевых МОП-транзисторов.

    Конфигурируемые функции защиты цепи непрерывно защищают ИС и нагрузку от повреждений из-за сбоев системы. ZL8101 непрерывно контролирует входное напряжение, выходное напряжение / ток, внутреннюю температуру и температуру внешнего термодиода. Вы также можете установить параметры мониторинга для определенных предупреждений о неисправности.

    Контур нелинейного отклика (NLR) улучшает время отклика и снижает переходные отклонения выходного сигнала нагрузки. Чтобы оптимизировать эффективность преобразователя мощности, ZL8101 отслеживает его рабочие условия и постоянно регулирует время включения и выключения полевых МОП-транзисторов высокого и низкого напряжения.Алгоритмы адаптивной оптимизации производительности, такие как управление мертвым временем, эмуляция диодов и адаптивная частота, обеспечивают большее повышение эффективности.

    Сигнал Power-Good (PG) указывает, что выходное напряжение находится в пределах указанного допуска его целевого уровня, и состояние неисправности отсутствует. По умолчанию вывод PG определяет, находится ли выходное напряжение в пределах -10% / + 15% от целевого напряжения. Вы можете изменить эти пределы и полярность через интерфейс I2C / SMBus.

    Внутренний контур фазовой автоподстройки частоты (ФАПЧ) служит для синхронизации внутренних схем.Вы можете управлять ФАПЧ от внешнего источника синхронизации, подключенного к выводу SYNC. Вы можете установить частоту переключения от 200 кГц до 1,33 МГц.

    Графический интерфейс на базе Windows обеспечивает полную настройку и возможность мониторинга через интерфейс I2C / SMBus.

    NDM3Z-90

    CUI — это модуль на 90 А, который имеет несколько функций, обеспечивающих высокую эффективность преобразования мощности. Адаптивные алгоритмы и управление зарядом от цикла к циклу сокращают время отклика и уменьшают отклонение выходного сигнала в результате переходных процессов нагрузки.

    ZL8800

    NDM3Z использует Intersil ZL8800 для автоматической компенсации. Это двойной или двухфазный цифровой контроллер постоянного / постоянного тока. Каждый выход может работать независимо или использоваться вместе в двухфазной конфигурации для сильноточных приложений. ZL8800 поддерживает широкий диапазон выходных напряжений (от 0,54 В до 5,5 В), работая от входных напряжений от 4,5 до 14 В. На рис. 7-29 показана двухфазная конфигурация, в которой используются внешние модули питания DRMOS.

    7-29.Intersil ZL8800 сконфигурирован как двухфазный преобразователь

    Благодаря полностью цифровому управлению ChargeMode Control, ZL8800 будет реагировать на скачок нагрузки в течение одного цикла переключения. Этот уникальный метод модуляции без компенсации позволяет конструкциям соответствовать требованиям к переходным процессам с минимальной выходной емкостью, что позволяет сэкономить средства и место на плате.

    Фирменная однопроводная последовательная шина DDC (Digital-DC) компании

    Intersil позволяет ZL8800 обмениваться данными между другими ИС Intersil.Используя DDC, ZL8800 выполняет сложные функции, такие как балансировка фазных токов между ИС, упорядочивание и устранение неисправностей, устраняя необходимость в сложных системах управления источниками питания с многочисленными внешними дискретными компонентами.

    ZL8800 имеет пошаговую защиту от перегрузки по току на выходе. Входное и выходное напряжение, а также напряжение питания драйвера DrMOS / MOSFET защищены от повышенного и пониженного напряжения. Для контроля температуры доступны два внешних и один внутренний датчик температуры, один из которых используется для защиты от пониженной и повышенной температуры.Функция параметрического захвата моментальных снимков позволяет пользователям делать снимки рабочих данных и данных о неисправностях в нормальных условиях или в условиях сбоя.

    Интегрированные регуляторы с малым падением напряжения (LDO)

    позволяют ZL8800 работать от одного источника питания, устраняя необходимость в дополнительных линейных регуляторах. Выход LDO может использоваться для питания внешних драйверов или устройств DrMOS.

    Благодаря полной совместимости с PMBus, ZL8800 способен измерять и сообщать входное напряжение, входной ток, выходное напряжение, выходной ток, а также внутреннюю температуру устройства, внешнюю температуру и вход вспомогательного напряжения.

    Этот блок питания включает в себя широкий спектр настраиваемых функций управления питанием, которые легко реализовать с минимальным количеством внешних компонентов. Кроме того, источник питания имеет защитные функции, которые постоянно защищают нагрузку от повреждений из-за неожиданных сбоев системы.

    Стандартная конфигурация источника питания подходит для широкого диапазона операций с точки зрения входного напряжения, выходного напряжения и нагрузки. Конфигурация хранится во внутренней энергонезависимой памяти (NVM).Все функции управления питанием можно перенастроить с помощью интерфейса PMBus.

    Автокомпенсация Powervation

    Компания

    Bellnix Co. Ltd. (Япония) использует цифровой контроллер ROHM PV3012 Powervation в своем низкопрофильном модуле постоянного / постоянного тока на 60 А. Цифровой модуль питания BDP12-0.6S60R0 представляет собой неизолированный понижающий преобразователь, совместимый с PMBus, который удовлетворяет потребности в конструкциях с малым форм-фактором, обеспечивая при этом высокую надежность и высокую производительность. ROHM PV3012 — это цифровой двухфазный контроллер (рис.7-30).

    7-30. ИС PV3012 от Powervation — это ИС с автоматической компенсацией в реальном времени с одним выходом, двух- или однофазным цифровым синхронным понижающим контроллером для приложений POL.

    Используется BDP на 60 А, и параллельная работа модуля BDP поддерживается через шину разделения тока DSS компании ROHM. Этот совместимый с PMBus модуль обеспечивает точные измерения и телеметрические отчеты, полную линейку программируемых функций защиты источника питания, хорошее энергопотребление и дополнительную функцию отслеживания — все в компактном 32.Дизайн корпуса SMD, соответствующий ROHS, 8 мм × 23,0 мм.

    Цифровой контроллер

    ROHM PV3012 Powervation также используется в сильноточных цифровых модулях POL серии iJB от TDK-Lambda. Продукты серии iJB поддерживают работу при низком напряжении и сильном токе, обеспечивая точность заданного значения ± 0,5% по линии, нагрузке и диапазону температур. В то время как функциональность модуля PMBus обеспечивает телеметрию напряжения, тока и температуры в реальном времени и обеспечивает полную программируемость преобразователя постоянного / постоянного тока, в продуктах серии iJB также используются контакты для настройки функций, что позволяет использовать их в приложениях, не связанных с PMBus. .

    Используя интеллектуальную технологию автонастройки Powervation, Auto-Control, модули iJB POL обеспечивают лучшую динамическую производительность и стабильность системы для приложения. Auto-Control — это запатентованная технология адаптивной компенсации, которая оптимизирует динамические характеристики и стабильность системы в реальном времени, не требуя внесения шума или недостатков периодических методов. Это ключевое преимущество для модулей и других конструкций, которые управляют неизвестными или переменными нагрузками на выходе, и решает проблемы, связанные с дрейфом параметров нагрузки, который происходит с температурой и временем.

    Еще одним пользователем цифрового контроллера PV3012 является модуль DC / DC OKLF-T / 25-W12N-C от Murata Power Solutions. Это неизолированный преобразователь постоянного тока в постоянный, вырабатывающий максимум 25 А при выходном напряжении 1,2 В при работе при температуре до 70 ° C с потоком воздуха 200 LFM. Регулируемые выходы обеспечивают точное регулирование от 0,69 В до 3,63 В в широком диапазоне входных напряжений (от 6,5 В до 14 В).

    Модуль OKLF 25 A компании Murata Power Solutions обеспечивает сверхбыструю реакцию на переходные процессы при нагрузке, исключительные характеристики снижения номинальных характеристик и типичный КПД> 90% в форм-факторе с высокой плотностью мощности.Модуль представляет собой полноценный автономный источник питания; Благодаря использованию ИС цифрового управления PV3012 он обеспечивает полный набор функций защиты и прецизионную точность уставки.

    Этот преобразователь POL обеспечивает прецизионную точность уставки ± 0,5% по линии, нагрузке и диапазону температур — намного лучше, чем аналоговые варианты. Кроме того, это предложение повышает ценность за счет использования компактных приподнятых катушек индуктивности и функции автоматического управления Powervation.

    PV3204

    Одним из новых продуктов Powervation от ROHM, обеспечивающих автокомпенсацию, является PV3204, двухфазный цифровой синхронный понижающий контроллер с адаптивной компенсацией контура для приложений точки нагрузки (POL) (рис.7-31). Выход может подавать от 0,6 В до 5,5 В и может быть настроен и управляться через PMBus или посредством программирования, хранящегося в энергонезависимой памяти (NVM). Помимо интерфейса SMBus, PV3204 предоставляет 3-битный параллельный интерфейс VID с отображением от 0,85 В до 1,0 В с шагом 25 мВ и 1,05 В.

    7-31. Powervation PV3204 — это двухфазный цифровой синхронный понижающий контроллер с адаптивной автоматической компенсацией контура для приложений точки нагрузки (POL).

    PV3204

    PV3204 использует фирменный адаптивный цифровой контур управления Powervation, Auto-Control, технологию адаптивной компенсации контура в реальном времени для переключаемых преобразователей мощности, которая автономно уравновешивает компромисс между динамическими характеристиками и стабильностью системы.Auto-Control избавляет от сложных вычислений и настройки оптимальной стабильности, используемой с традиционными методами компенсации. Функция Auto-Control регулирует коэффициенты P, I и D в каждом цикле переключения для непрерывного достижения оптимальной стабильности в широком диапазоне помех. Автоматическое управление встроено в архитектуру управления цифровых устройств Powervation и не зависит от шума, вносимого периодическими калибровками. Непрерывный характер автоматического управления позволяет ему управлять изменениями в системе, которые происходят в режиме реального времени или медленно с течением времени при использовании источника питания.Эта самокомпенсация происходит от цикла к циклу, поэтому Auto-Control может непрерывно регулировать в соответствии с изменениями температуры, которые происходят во время использования источника питания, и учитывает другие факторы, такие как старение и дрейф.

    Этот контроллер может использоваться в одно- или двухфазном режиме. При использовании в двухфазном режиме фазы могут добавляться или удаляться по мере изменения нагрузки, так что эффективность максимальна во всем диапазоне нагрузки. Кроме того, выходы фаз чередуются, так что эффективная частота переключения на выходе увеличивается вдвое.

    Цифровые функции этого контроллера преобразователя мощности PMBus позволяют осуществлять системную телеметрию (удаленное измерение и составление отчетов) о токе, напряжении и температуре.

    Кроме того, чтобы максимизировать производительность и надежность системы, ИС обеспечивает температурную коррекцию / компенсацию нескольких параметров.

    Balmar | Судовые системы зарядки | Мониторы батарей | Многоступенчатые регуляторы напряжения | Генераторы высокой мощности

    Конфигуратор системы зарядки Balmar

    Выберите тип двигателя…ДизельГаз

    Выберите производителя … Beta MarineBMWBPMBukhCaterpillarChryslerCrusaderCummins MarineCummins MercruiserDetroit DieselDeutz DiterIndmarJohn DeereLehmanMarine PowerMarinerMercruiserMitsubishiNanniOMCPerkins / SabrePleasurebeselaVentvoes9

    Выберите модель … 12C12D13A181GM1GM101GM10C1GM10L1GML1GMY200 (DFI) 200120022003, T20B2121A225 (Carb) 225 (DFI) 225 (EFI) 225 SEA PRO (Carb) 250 (EFI) -2727A2G1052GM2GMDYZT (EFI) 2727A2G1052GM2GMQM2GM2GMQ2GM2GMQ2GM2GMQM2GM2GMQ2GM2GM2GM2GM2GMQ2GM2GM2GM20GL3.0GLM3.0GLP3.0GS3.0GSM3.0GSP305305CI, 5.0L30B30C3114311631453150316031763176B3176C31963196C3208333304330634063406B3406C340834123503508350CI, 5.7L3512351635B364364CI, 6.0L38B3G1053GM3GMD3GMF3GMFY-E3GMLE3HM3HMF3Jh33Jh3BE3Jh3E3Jh43Jh4E3Jh4E-YEU3Jh4Z3Jh5E3TD3TM3TNE843TNE883YM203YM304.3Gi4.3GL4.3GS4.3GXi, Osi404039DFM4045DFM504045DFM704045TFM4045TFM504045TFM7542B431A, B432A, B434A, B44A44B46496496CI, 8.1L4D2544GM4Jh5JH-HT4JH-НТ-Z4JH- T4JH-TE4JH-TZ4Jh3-CE4Jh3-DTE4Jh3-E4Jh3-HTE4Jh3-TE4Jh3-UTE4Jh3L-HTNE4Jh3L-TNE4Jh44Jh4-CE4Jh4-DTE4Jh4-HTE4Jh4-TCE4Jh4-TE4Jh4E4Jh4ZA4JHE4JHZ4K1054LH-DTE4LH-HTE4LH-STE4LH-TE4LHA-DTE4LHA-DTZ4LHA-HTE4LHA-HTZE4LHA-STE4LHA- STZE4TD4TM4TNE844TNE885.0Fi5.0FL5.0Gi5.0GL5.0GXi, Osi5.7Gi5.7GiL5.7GL5.7GLi5.7GS5.7GSi5.7GSiL5.7GXi5.7GXiL5.7OSi5.7OSXi5.8Fi5.8FL5.8Fsi5.8L500A, B501A, B55B55C55D570570A570T572A, B6068DFM6068SFM506068SFM756068TFM6068TFM506068TFM756068TFM766076AFM6076AFM306081AFM016081AFM756125AFM016125AFM756125SFM756D363, TC6K1056LP- DT6LP-DTE6LP-DTZE6LP-DTZE16LP-DTZY6LP-ST6LP-STE6LP-STZE6LY-ST6LY-STE6LY-STM6LY-STZY6LY-UT6LY-UTE6LY-UTM6LY-UTZY6LY2-STE6LYA-STE6LYA-UTE6LYM-STE6LYM-UTE7.4Gi7.4GL7.4Gsi71740A, В8. 1Gi8.1GiL8.1GSi8.1GSiL8.1GXi8.1GXiL8.1OSI8.2GL8.2GSi8.2L82AD290AD31, A, B, D, L, P, XAD41A, B, D, L, PAQ100AQ115A, B, CAQ120AQ120BAQ125, A, BAQ130A, B, C, DAQ131A, B, C, DAQ1AQAQ1405, DAQ1AQAQ5QAQ5AQ5 В, С, DAQ171AAQ175AQ175AAQ200A, В, CAQ200DAQ205AQ205AAQ211AQ211AAQ21AAQ225A, В, С, D, FAQ231A, BAQ255A, BAQ256AQ260AQ260A, BAQ271, А, В, CAQ280AQ280AAQ290AQ290AAQ311AQ311A, BAQAD30AAQAD31AAQAD40A, BAQAD41AQAD41A, В, DAQD19AQD21AAQD21BAQD27AQD29, AAQD2BAQD32AAQD40A, BAQD41AQD41AAQD70BAQD70BLAQD70CAQD70CLAQD70DArctic 157Arctic 181AS130CAS270TDB130B18MB190B21B220B23BB115A, В, CBB145BB145ABB165ABB170BB170BBB170CBB225, А, B, CBB231ABB260A, B, CBB261, ABeta 105Beta 14Beta 16Beta 20Beta 25Beta 30Beta 35Beta 38Beta 43Beta 50Beta 60Beta 75Black Scorpion Ski (Gen +) D1-20A, BD1-30A, BD12-7DA-D1-20A, BD1-30A, BD12-7DA-D-MHD2-7D12-650D-MHD1-30A, BD12-45D-BD2-28DA-BD12-55D-M , В, CD2-75AD203-2D203-DD229-4D229-6D302-2D302-3D303-2D303-3D41A, В, D, LDPX375DPX385DPX415DPX420DPX500DPX525DPX600DV10DV10MEDV10SMEDV20DV20MEDV20SMEDV36DV36MEDV36SMEDV48MEDV48SMEEI 165EI 250EI 300ES 165ES 250ES 300INBOARD & V-DRIVEIonic 144IPS500GK4EK4MK AD300KAD32PKAD42A, B, PKAD43PKAD44PKAMD300KAMD42A, B, PKAMD43PKAMD44PKBW-20KBW-21KM2AKM2PKM3AKM3VKM5AL2AL2EL3CL3ELM318XLM340XLM383XM 2.04M 2.06M 2.C5M 2.D5M 3.09M265M273XMB20MB20AMB70BMD100MD100A, BMD100SMD11MD110SMD11CMD11DMD120MD120AMD17MD17CMD17DMD18MD19MD2MD2010, A, B20, DMD, B20, CAMD, B20, CAMD, B20, CAMD, B20, CAMD, B20, CAMD, B20, CAMD, B20 PMD27MD29, AMD2BMD2BHYMD3MD30MD30AMD31AMD32AMD3AMD3BMD40AMD42AMD42BMD5MD50MD50AMD5A, В, CMD6MD6AMD6BMD7MD70MD70AMD70B, CMD7AMD7BMI 120Model 110Model 120Model 140Model 150Model 165Model 175Model 185Model 190Model 198 MIEModel 2.5LModel 200Model 205Model 215Model 215 MIEModel 225Model 225 MIEModel 228Model 228 MIEModel 230Model 230 MIEModel 233Model 233 MIEModel 250Model 255Model 255 MIEModel 260Model 260 MIEModel 262 Mag (Gen +) (TBI) Модель 270 Модель 270 MIEM Модель 280 TRS Модель 3.0 / 3.0LX Модель 300 Tempest Модель 320 (EFI) Модель 325 Модель 325 MI Модель 330 Модель 330 MIEModel 350 Mag Alpha Модель 350 Mag Alpha (4-BBL) Модель 350 Mag Alpha EFI (Gen +) Модель 350 Mag Bravo MPI Модель 350 Mag Bravo MPI (Gen +) Модель 350 Mag EFI Ski (Gen +) Модель 350 Mag EFI Ski (TBI) Модель 350 Mag MPI (Gen +) Модель 350 Mag MPI Alpha и BravoModel 350 Mag MPI Hor Alpha и BravoModel 350 Mag MPI HorizonModel 350 Mag MPI MIE (Gen + ) Модель 350 Mag MPI SkiModel 350 Mag MPI Ski (Gen +) Модель 350 Mag SkiModel 350 MIEModel 370 TRSModel 377 Scorpion (Gen +) (Ski) Model 377 Scorpion SterndriveModel 390Model 390 MIEModel 4.3L (2-BBL) Модель 4.3L (Carb.) Alpha и BravoModel 4.3L (Gen +) Модель 4.3L (Gen II) Модель 4.3L (Gen II) (2-BBL) Модель 4.3L (MFI) Alpha и BravoModel Модель 4.3L EFI (Gen +) TBI Модель 4.3L MPIModel 4.3LH (Gen +) (4-BBL) Модель 4.3LHX (Gen +) (4-BBL) Модель 4.3LX (4-BBL) Модель 4.3LX (Gen +) (2-BBL) Модель 4.3LX (Gen II) (4-BBL) Модель 400 TRS (Циклон) Модель 420 Модель 425 Модель 425 (Gen V) Модель 440 TRS (Cyclone) Модель 450 (Gen V) Модель 454 EFI (Gen V) Модель 454 EFI Ski (Gen V) Модель 454 Mag AlphaModel 454 Mag Bravo Модель 454 Mag Bravo (Gen V) Модель 454 Mag Bravo (Gen VI) Модель 454 Mag Bravo MPI (Gen VI) Модель 454 Mag MPI (Gen VI) Модель 454 Mag MPI Horizon Модель 454 Mag MPI Horizon (Gen VI) Модель 454 Mag MPI Ski (Gen VI) Модель 460 TRS (Cyclone) Модель 465 Модель 465 (Gen V) Модель 496 MagModel 496 Mag HOModel 5.0L (2-BBL) Модель 5.0L (2-BBL) (Gen +) Модель 5.0L (4-BBL) Модель 5.0L (Carb.) Alpha и BravoModel 5.0L EFI (Gen +) Модель 5.0L MPI Alpha и BravoModel 5.0LXModel 5.7L (2-BBL) Модель 5.7L (2-BBL) (Gen +) Модель 5.7L (Carb.) Alpha и BravoModel 5.7L BravoModel 5.7L Competition SkiModel 5.7L EFI (Gen +) Модель 5.7L EFI ( Gen +) MIEModel 5.7L EFI (TBI) (2-BBL) Модель 5.7L EFI (TBI) AlphaModel 5.7L EFI (TBI) BravoModel 5.7L MIEModel 5.7L SkiModel 5.7L Ski (CARB) Модель 5.7L Ski (Gen +) Модель 5.7LX (4-BBL) Модель 5.7LX Bravo EFI (Gen +) Модель 5.7LX EFI (TBI) (2-BBL) Модель 5.7LX EFI (TBI) (4-BBL) Модель 500 (Gen +) Модель 500 (Gen V) Модель 500 (Gen VI) Модель 500 BulldogModel 500 EFIModel 502 EFI (Gen V) Model 502 Mag BravoModel 502 Mag Bravo (Gen V) Model 502 Mag MPI (Gen VI) Model 502 Mag MPI Bravo (Gen VI) Model 525 EFIModel 525SCModel 525SC (Gen V) Model 525SC ( Поколение VI) Модель 575SCIModel 600SC (Gen IV и V) Модель 600SC (Gen VI) Модель 600SCIModel 662SCIModel 7.3L (Bravo & MIE) Модель 7.4L BravoModel 7.4L Bravo (Gen V) Модель 7.4L Bravo (Gen VI) Модель 7.4L MIE (LH) (Gen V) Модель 7.4L MIE (LH) (Gen VI) Модель 7.4L MIE (LH) с Hurth MK4 Модель 7.4L MIE MPI (L29) (Gen VI) Модель 7.4L MIE MPI (LH) (Gen V) Модель 7.4L MIE MPI (LH) (Gen VI) Модель 7.4L MIE TBI (LH) (Gen VI) Модель 7.4L MPI (Gen VI) Модель 7.4LX Bravo MPI ( Поколение V) Модель 7.4LX Bravo MPI (Поколение VI) Модель 7.4LX Bravo TBI (Поколение VI) Модель 7.4LX MPI (Поколение V) Модель 7.4LX MPI (Поколение VI) Модель 7.4LX MPI (Поколение VI) (L29) Модель 7.4 LX TBI (поколение VI), модель 700SCIModel 8.1S HOModel 8.1S HorizonModel 8.2L MIE (Gen V), модель 8.2L MIE MPI (LH) (Gen VI) Модель 8.2L MIE с HurthModel 800SC (Gen V) Модель 888Model 898Model 900SC Модель D1.7L DTI (Alpha) Модель D2.8L D-Tronic (Bravo & MIE) Модель D3.0L BravoModel D3.0L MIEModel D3.6L BravoModel D3.6L MIEModel D3.6L W Bravo (экспорт) Модель D4.2L BravoModel D4.2L MIEModel D4.2L / 250 D-TronicModel MX 6.2L BS MPI SkiModel MX 6.2L MPIModel MX 6.2L MPI HorizonMS 120Oceanic 235Oceanic 265SP 4.19P 4.42RC100. DRC105DRC106D, DSRC120DRC140DRC145DTSRC160DSRC180DRC18DRC210DT, DTSRC215DV, DTSRC240DTSRC25RC25DRC285DVRC320DRC355DVRC36DRC480DV, TurboRC600DTVRC800DTVRC90DSRover 60TAMD102A, DTAMD103ATAMD120TAMD120A, BTAMD121, С, DTAMD122, А, С, D, PTAMD162, А, В, CTAMD163, А, PTAMD165A, С, PTAMD22PTAMD30, А, В, CTAMD31A, В, D , L, M, P, S, XTAMD40A, B, CTAMD41ATAMD41B, D, H, L, M, PTAMD42A, B, WJTAMD60, A, B, CTAMD61, ATAMD62ATAMD63L, PTAMD70TAMD70B, C, DTAMD70ETAMD71, A, BTAMD , WJTAMD73P, WJTAMD74A, C, L, PTAMD75PTD203-3TD229-4TD229-6THAMD70, В, CTMD100TMD100ATMD100B, CTMD102ATMD120TMD120A, BTMD121CTMD122ATMD22, А, PTMD30A, BTMD31A, В, D, LTMD40TMD40A, В, CTMD41A, В, D, LTMD50TMD50ATMD70ATMD70B, CUJh3EV SeriesV- 115 (DFI) V-135 (DFI) V-150 (DFI) V-175 (DFI) V12 / 570V12 / 620S Различные модели Vulcano 375 Vulcano 450Y-5M


    Не готовы к настройке?

    Первый обзор нашего
    Руководство по выбору системы зарядки
    Поиск по Balmar, OEM или Aftermarket Генератор

    , основная часть линейного и импульсного регулятора напряжения 1

    % PDF-1.4 % 1 0 obj> поток application / pdf Фундаментальная часть линейного и импульсного регулятора напряжения 1

  • Замечания по применению
  • Texas Instruments, Incorporated [SNVA558,0]
  • iText 2.1.7 by 1T3XTSNVA5582011-12-07T21: 56: 09.000Z2011-12-07T21: 56: 09.000Z конечный поток эндобдж 2 0 obj> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Font >>> / MediaBox [0 0 540 720] / Contents [7 0 R 8 0 R 9 0 R 10 0 R] / Type / Страница / Родитель 11 0 R >> эндобдж 3 0 obj> поток

    Схема автоматического стабилизатора напряжения

    Стабилизатор напряжения — это устройство, которое стабилизирует напряжение переменного тока и поддерживает его в диапазоне от 200 В до 255 В переменного тока.Иногда в линии переменного тока появляются колебания напряжения или скачки напряжения, если мы используем стабилизатор напряжения, то сверхвысокие или низкие напряжения не могут вызвать проблем для приборов. Он защищает любое подключенное к нему электронное устройство от повреждения. Автоматический стабилизатор напряжения — очень хороший пример из проектов силовой электроники .

    На рынке представлены различные разновидности стабилизаторов напряжения. Но мы также можем изготовить их дома в соответствии с нашими потребностями и требованиями.

    стабилизатор напряжения важные моменты

    Перед созданием этого устройства необходимо иметь в виду следующие моменты и характеристики, чтобы устройство, которое мы создали, могло работать должным образом и давать желаемые результаты:

    • Диапазон входного напряжения должен быть от 150 до 260 В.
    • Диапазон выходного напряжения должен составлять от 200 В до 240 В.
    • Форма сигнала или частота входных / выходных напряжений не должны изменяться.
    • Материал, используемый в нем, не должен быть слишком дорогим, иначе было бы бесполезно делать его дома, переживая все проблемы, вместо этого можно просто купить дешевый на рынке.Следовательно, это не должно быть дорогим.
    • В готовом изделии не должно быть варисторов или переменных резисторов.
    • Всего в цепи используется 4 реле.
    • Используемый автотрансформатор имеет 4 дополнительных вывода, установленных на 165 В, 190 В, 215 В и 240 В, все с разницей примерно в 25 В.
    • Используемый микроконтроллер r — PIC 16F873A.

    Стабилизатор напряжения автоматический рабочий

    Микроконтроллер генерирует управляющие сигналы, и четыре реле используются с автотрансформатором для управления и преобразования напряжения.Входное напряжение воспринимается микроконтроллером, и он пытается удерживать выходное напряжение между заданными диапазонами, переключая реле. Из четырех реле два из них переключают соединение между выводами 165 В, 190 В и 240 В, одно переключает выходное соединение между выводами 215 и 240, а последнее является главным реле включения / выключения, которое отключает выход в случае режимы low и high cut. Связь реле с микроконтроллером очень проста.

    стабилизатор напряжения ДАТЧИК ВХОДНЫХ НАПРЯЖЕНИЙ

    Прежде всего, мост выпрямителя используется для преобразования входного переменного напряжения в постоянное, а затем большой конденсатор, который сглаживает постоянное напряжение.И, используя схему делителя напряжения, мы понижаем напряжение постоянного тока, чтобы микроконтроллер мог его принять. После долгих размышлений и экспериментов было выбрано соотношение резисторов схемы делителя напряжения (47 кОм * 6): 3,3 кОм. схема с таким соотношением работает лучше, а рассеиваемая мощность также снижается.

    На выходе схемы делителя напряжения была подключена фиксирующая схема, образованная двумя диодами. Напряжение будет ограничено одним из диодов, когда он начнет работать в прямом смещенном состоянии после получения высокого напряжения.Это будет примерно 5,7 В. Если на выходе делителя напряжения появляется низкое напряжение, то другой диод начинает работать в режиме прямого смещения и ограничивает напряжение на -0,7. Затем эти напряжения могут безопасно поступать на ADC микроконтроллера. Диоды Шоттки можно использовать для улучшения фиксации напряжений.

    Входное сопротивление АЦП и входные конденсаторы — это две вещи, которые могут повлиять на правильную работу схемы:

    • Если входной конденсатор очень большой, его разряд будет медленнее, и мы не сможем получить быструю или быструю реакцию.После использования различных конденсаторов мы обнаружили, что лучше всего подходит конденсатор емкостью 22 мкФ, так как его реакция эффективна в случае постоянного напряжения, а также пульсаций.
    • Для правильного измерения уровня постоянного тока АЦП ПОС мы подключаем конденсатор на выходе делителя напряжения. Это обеспечит параллельную емкость внутреннему конденсатору АЦП. Время выборки АЦП также было скорректировано, чтобы мы могли получить точные результаты.

    КАЛИБРОВКА АКПП Стабилизатор напряжения

    Для калибровки мы поместили в цепь выключатель.Когда этот переключатель активируется и мы сбрасываем микроконтроллер, тогда контроллер переходит в режим калибровки. Это будет единственный переменный резистор, который мы использовали в схеме, и он необходим, потому что может быть много несоответствий в различных компонентах и ​​их выходах в схеме. На выходы могут влиять допуск резисторов и вариации прямого падения напряжения диодов, а также многие другие факторы. Мы подключим переменный резистор в нашу схему делителя напряжения и, изменив значения сопротивления, мы сможем получить требуемый выход.

    Переменный резистор в этой схеме ненадежен, и в условиях переменного высокого и низкого напряжения нам нужна последовательность в работе этой схемы в течение более длительных периодов времени, поэтому мы решили не использовать переменный резистор в конечном продукте.

    автоматический стабилизатор напряжения с микроконтроллером

    Когда микроконтроллер входит в режим калибровки, измененное входное напряжение отображается контроллером. Мы можем измерить реальное напряжение с помощью вольтметра.Меняем переменное сопротивление и микроконтроллер показывает другое напряжение. Кодирование АЦП микроконтроллера выполнено таким образом, что результат АЦП преобразуется в уровень переменного напряжения. Также вводится константа, которая умножается на все выражение, и когда мы меняем значение переменного резистора, то постоянное значение также изменяется, что можно увидеть на семисегментном дисплее. Микроконтроллер сохраняет это значение в EEPROM .

    При запуске контроллер проверяет калибровку.Постоянное значение было сохранено в EEPROM, контроллер извлекает данные, и теперь это значение будет использоваться во всех дальнейших расчетах напряжения. При первом запуске микроконтроллер ожидает калибровки, если переключатель нажат и калибровка выполнена, переключатель размыкается, константа сохраняется в EEPROM, и выполняются дальнейшие операции.

    После успешной калибровки мы можем удалить переключатель и переменный резистор из схемы.Переключатель и переменный резистор могут понадобиться только сейчас, если мы хотим перекалибровать схему, в противном случае они больше не требуются в схеме.

    Стабилизатор напряжения Реле и ответвления трансформатора

    Приведенная выше конфигурация показывает различные ответвления трансформатора с реле. Переключение входа осуществляется между 165 В, 190 В и 240 В, а для вывода — 240 В и 215 В. В этой схеме мы использовали простой автотрансформатор.Вспомогательная обмотка используется для питания схемы, также показано соотношение витков:

    Схема автоматического стабилизатора напряжения

    Обе части принципиальной схемы автоматического стабилизатора напряжения показаны ниже. Вы можете использовать эти схемы.

    Схема автоматического стабилизатора напряжения 2 Схема автоматического стабилизатора напряжения

    Стабилизатор напряжения ЦЕПНАЯ РАБОТА

    Для схемы микроконтроллера мы используем внешний кристалл 4 МГц.Это необходимо, потому что в PIC 16F873A нет внутреннего кристалла. Вход 5 В постоянного тока используется для питания микроконтроллера. Вспомогательная обмотка автотрансформатора 12,5 В. Это напряжение не будет сильно изменяться, потому что цепь и реле также будут работать, чтобы регулировать это напряжение. Этот переменный ток преобразуется в постоянный с помощью выпрямителя, а затем конденсатор фильтрует его. Также используется регулятор 7805 напряжения, который принимает отфильтрованный постоянный ток. Также используется развязывающий конденсатор, который размещается рядом с микроконтроллером.

    Напряжение постоянного тока, которое подается на 7805 , также используется для питания реле. Но не напрямую, так как напряжение все же немного выше номинального напряжения реле. Таким образом, мы пропускаем это напряжение через четыре последовательно соединенных диода, что снизит напряжение на 2,8 В. Микроконтроллер управляет переключением реле, но он не может обеспечить ток, необходимый для работы реле, поэтому мы используем транзисторы для увеличения значения тока.

    Переходя к семисегментному дисплею, три семисегментных дисплея, используемые в схеме, переключаются один за другим, что минимизирует количество выводов, необходимых для их управления.Но это происходит так быстро, что мы не можем понять это, просто глядя на них. Частота обновления составляет 167 Гц, то есть дисплей обновляется 167 раз за секунду. Для достижения необходимой яркости мы подключили семь транзисторов к семисегментным дисплеям.

    Мы использовали три светодиода в схеме, которые также показывают задержку, обрезку низких или высоких частот или просто нормальный режим контроллера. Это был весь процесс создания автоматического стабилизатора напряжения в домашних условиях. Мы надеемся, что, выполнив все действия правильно, вы сможете сделать его и дома, а также сможете изменить его в соответствии с вашими требованиями.

    4 причины использовать стабилизаторы напряжения дома

    Почти каждое домашнее хозяйство в Индии стало жертвой электрического сбоя. Колебания напряжения и неравномерные скачки напряжения — обычная боль для масс. Они не только доставляют неудобства, но и влияют на состояние вашей бытовой техники. Единственный способ обезопасить их — установить соответствующие корректирующие устройства, которые стабилизируют поток электричества до того, как он достигнет основного устройства. Стабилизатор напряжения — подходящее решение.

    Что такое стабилизатор напряжения?

    Стабилизатор напряжения — это электрическое устройство, предназначенное для стабилизации неравномерного протекания тока. Он отвечает за регулирование выходного тока при постоянном расходе независимо от входящего питания. Проще говоря, это посредник между источником питания и приборами, который обеспечивает и устраняет любые нарушения в протекании тока перед передачей тока на приборы. Его также называют автоматическим регулятором напряжения , поскольку он автоматически регулирует неравномерное выходное напряжение с клеммы генератора.

    Как работает стабилизатор напряжения?

    Единственная функция стабилизатора напряжения — стабилизировать напряжение. Это действие может быть выполнено двумя способами: функцией компенсации и функцией повышения. Ситуация неравномерного потока возникает либо из-за перенапряжения, либо из-за недостаточного расхода. В первой ситуации, т.е. при переполнении, необходимо уменьшить дополнительное напряжение, поэтому срабатывает функция понижения. Тогда как в последнем случае поток напряжения меньше необходимого.Это требует увеличения напряжения питания, следовательно, функции Boost.

    Добавление и уменьшение потока напряжения осуществляется через трансформатор, установленный внутри стабилизатора напряжения, это может быть как ручным, так и автоматическим, в зависимости от типа используемого стабилизатора напряжения.

    Зачем моему дому нужен стабилизатор напряжения?
    • Защита от сбоев в работе оборудования

    Все приборы предназначены для работы при определенном напряжении, любая неисправность может привести к серьезным повреждениям.Для каждого электрического устройства существует предел безопасной эксплуатации, любая неисправность в нем может снизить его эффективность или просто привести к сбоям в работе оборудования. Это приводит к чрезмерной слышимости устройства и, таким образом, к повреждению изоляции, что приводит к снижению эффективности и производительности. Если вовремя не исправить это, это также может привести к необратимому повреждению вашего прибора.

    Стабилизатор напряжения снижает вероятность неисправности оборудования почти до нуля, тем самым защищая оборудование.

    • Увеличивает срок службы приборов

    Стабилизатор напряжения поддерживает постоянный поток электрического тока к приборам.Это повышает их эффективность и помогает обеспечить бесперебойную работу прибора. Плавный и бесперебойный ввод напряжения помогает устройствам оставаться в хорошем состоянии и, таким образом, увеличивает срок их службы.

    Покупка стабилизатора напряжения — это единовременное вложение. Это снижает вероятность выхода оборудования из строя. Это избавит вас от дополнительных затрат на обслуживание / ремонт старых неисправных приборов. Кроме того, это увеличивает срок службы устройств и обеспечивает эффективное функционирование старых устройств, тем самым избавляя вас от дополнительных расходов на замену старого устройства или покупку нового устройства.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *